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Abstract 

 Evidence suggests meditation may improve health and well-being. However, 

understanding how meditation practices impact therapeutic outcomes is poorly characterized, in 

part because existing measures cannot track internal attentional states during meditation. To 

address this, we applied machine learning to track fMRI brain activity patterns associated with 

distinct mental states during meditation. Individualized brain patterns were distinguished for 

different forms of internal attention (breath attention, mind wandering, and self-referential 

processing) during a directed internal attention task. Next, these brain patterns were used to track 

the internal focus of attention, from moment to moment, for meditators and matched controls 
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during breath-focused meditation. We observed that while all participants spent the majority of 

time attending to breath (vs. mind wandering or self-referential processing), meditators with 

more lifetime practice demonstrated greater overall breath attention. This new framework holds 

promise for elucidating therapeutic mechanisms of meditation and furthering precision medicine 

approaches to health.  

 

Meditation practices, or mental exercises that train qualities of attention, are increasingly 

used to improve health and well-being in clinical populations as well as the general public. 

Meditation and mindfulness-based interventions may cultivate sustained attention1–3, compassion 

and prosocial behavior4–6, creativity7, improved brain structure and function8–11, less implicit 

bias12, reduced stress13, and decreased symptoms in clinical populations with pain14, 

depression13,15, anxiety13, and cancer16. Based on these promising results, meditation practices 

are being implemented in a variety of fields such as medicine, psychology, education, business, 

law, and politics17. Collectively, meditation practices may strengthen interoception (awareness of 

internal bodily sensations)18,19, cognitive processes (including sustained attention, cognitive 

monitoring, and meta-awareness)3,20,21, and emotion regulation (less judgment and more 

equanimity with internal experiences)22,23. With practice, these skills may lead to better 

monitoring and regulation of physical, emotional, and social processes, contributing to improved 

health decision-making and behaviors18,19. However, the mechanisms through which meditation 

improves health and well-being are poorly specified, in part because there is currently no precise 

way to assess the quality of meditation practice17.  

Mental states during meditation are challenging to measure because they are often 

internal, diverse, and fluctuating. For example, in a core practice of focused attention to the 
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breath, meditators focus their attention on sensations of the breath, until they notice distraction 

by other internal or external stimuli, and then nonjudgmentally return their focus to the breath. 

Even in this simple practice, distinct mental states may occur and are dynamically fluctuating 

over time: the object of attention (breath or distractions), level of meta-awareness (awareness of 

object of attention), as well as attitudinal qualities such as nonjudgment, kindness, and 

curiosity24–26. Further, each meditator, and indeed each meditation session, is unique in the 

content and fluctuation of mental states. This may partly explain why outcomes of meditation-

based interventions often vary by individual, suggesting that participants may be employing 

different cognitive processes even when given similar instructions for formal practice17,27. 

Without the means to characterize mental states during meditation, scientists cannot quantify the 

internal attention states present during practice, and thus cannot predict or observe how 

meditation may change attentional qualities over time and contribute to clinical outcomes.  

Currently, there is no validated, objective way to measure and quantify these mental 

states that occur dynamically during meditation practice. Prior work has implicated several brain 

networks in breath meditation practice, which suggests that diverse mental states may be present 

during meditation. Studies using functional magnetic resonance imaging (fMRI) show increased 

activation in networks involved in focused attention and cognitive control10,28 (i.e., the Executive 

Function Network [EFN] including prefrontal cortex [PFC], anterior cingulate cortex, premotor 

cortex) as well as interoception or attention to internal bodily sensations10,29 (including the 

insula18,30). In addition, decreased activation is seen in regions associated with mind wandering 

and self-referential processing3,10,21 (i.e., the Default Mode Network [DMN including the anterior 

medial PFC, posterior cingulate cortex, and posterior inferior parietal lobule31,32]). Consistent 

with psychological and contemplative theories of how attention is altered by meditation24,25, 
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these findings suggest that meditators may focus on the breath via increased engagement of 

neural networks associated with cognitive control and interoception, and disengage from mind 

wandering and self-referential processing via decreased DMN activation3,10. Disengaging from 

self-related thought31 is particularly important from contemplative and clinical perspectives, due 

to the cognitive and emotional flexibility it cultivates13,21. However, the individual differences 

and fluctuation of mental states during meditation are obscured in traditional univariate analyses 

of brain data (used for most of these prior studies), in which spatial and temporal information are 

averaged within and across individuals to highlight consistent results at the group level. In other 

words, such approaches lack the temporal specificity of when each mental state and associated 

neural network are most engaged, and group-level averaging may fail to distinguish between 

different mental states that occur over time during meditation practice. 

Initial research suggests that meditation may involve temporally distinct cognitive 

processes and neural networks. For example, by indicating moments of meta-awareness of mind 

wandering via button presses, experienced meditators’ practice has been characterized as a cycle 

between four attention states: focused attention, mind wandering, meta-awareness, and 

refocusing of attention, with each activating a different neural network33. Meditators have also 

been provided continuous real-time neurofeedback34 from the posterior cingulate cortex, a major 

hub of the DMN, which helped them maintain focused attention during meditation35. While these 

findings suggest the presence of distinct neural processes during meditation, these group-level 

characterizations may not be universally generalized because individuals differ in structure-

function relationships. For example, across a sample of experienced meditators, activation levels 

in attention-related regions of the EFN during practice differed in their association with lifetime 
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meditation practice, such that middle levels of expertise were associated with the greatest 

activation28.  

Together, existing research suggests that some elements of neural function during 

meditation may be specific and individualized to each meditator, and may represent different 

mental states depending on practice history and other contextual factors. Further supporting the 

view that brain structure and function are unique for each individual, machine learning methods 

such as multi-voxel pattern analysis (MVPA)36 can be used to identify and track diverse mental 

states within each person, and can distinguish unique brain patterns associated with visual 

perception of different objects37, short- and long-term memory38, and social vs. physical pain39. 

In addition to being able to distinguish neural patterns associated with attending to many types of 

external stimuli, this approach can also distinguish internal states of attention40,41, which are 

more difficult to objectively validate. Recent work also suggests that neural signals associated 

with breath-focus can be distinguished from self-referential processing42. 

Based on these analytic issues, we developed the EMBODY framework (Evaluating 

Multivariate Maps of Body Awareness) which applies MVPA to fMRI data to classify on-going 

internal mental states during meditation, which can then be used to quantify meditation skills 

(Fig. 1). Here, we validated the EMBODY framework by measuring mental states during the 

core practice of breath meditation in 8 experienced meditators and 8 age and gender-matched 

novice control participants. The EMBODY Task involved three steps: in Step 1, neural patterns 

associated with internal mental states relevant for meditation were identified separately for each 

meditator using the Internal Attention (IA) task. In this task, participants were directed to attend 

to internal stimuli for short intervals (16-50s). With eyes closed, attention was directed to 

sensations of the breath, mind wandering, and self-referential processing, as well as two control 
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conditions (attention to feet, attention to ambient sounds; Fig. 2a). In Step 2, the individualized 

brain patterns learned from Step 1 were used to decode, from moment to moment, the unknown 

internal attentional states occurring during an independent 10-minute breath-focused meditation. 

In Step 3, the decoded meditation period was then quantified into attention metrics, such as the 

percentage of time engaged in breath attention or self-referential processing. To assess criterion 

validity of the EMBODY task, these brain-derived attention metrics were linked to 1) subjective 

reports of internal attention during the IA task and after the meditation session, 2) lifetime 

meditation practice, and 3) trait questionnaires of interoception and mindfulness. We included 

individuals from both groups because a) meditators are more likely to produce distinct brain 

patterns from consistent practice in directing and sustaining internal attention, and b) novices are 

the population most studied in clinical intervention studies. The framework was tested in each 

individual, while group-level statistics were computed for the entire sample to assess construct 

validity and inform future research. See Online Methods for details. 

 

RESULTS 

Step 1: Distinguishing neural patterns of internal attention 

The first aim of the EMBODY framework was to test whether MVPA applied to fMRI 

data could recognize individualized neural patterns associated with internal attention states 

important for breath meditation. With eyes closed, participants were directed using auditory 

instructions to engage in short durations (16-50s) in three distinct attentional states relevant for 

breath-focused meditation (attention to breath, mind wandering, self-referential processing) and 

two control conditions of internal and external attention (attention to feet and attention to 

ambient sounds, respectively) (Fig. 2a). Confirming this ability to distinguish individual neural 
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patterns, across all participants, each attentional state yielded a distinct neural signature (all 

classification accuracies>41% vs. 20% chance for 5 categories, ps<0.001; Fig. 2b). Furthermore, 

each attentional state was distinguished at more than twice chance levels, including the brain 

patterns most relevant for breath meditation (breath=50.5%, mind wandering=41.2%, self-

referential processing=49.0%; ts15>4.65, ps<0.001, Cohen’s ds>1.16) and the control conditions 

(feet=43.2%, sounds=43.7%, ts15>5.67, ps<0.0001, Cohen’s ds>1.41) (Fig. 2b; see Table S1 for 

classifier confusion matrix and Fig. S1 for classifier accuracies by group in Supplemental 

Information [SI]).  

The breath meditation-relevant brain patterns were reliably classified in 14/16 

participants (at least 2/3 ps<0.001 for breath, mind wandering, and self-referential processing, 

SI-Table S2). This included all 8 meditators and 6 of 8 novices, all of whom were used in 

subsequent analyses. Across participants, average trial-level classification accuracy was 

positively correlated with subjective ratings of internal attention (across all conditions except 

mind wandering, r13=0.67, p=0.032; Fig. 2c), demonstrating that better classification accuracy of 

the different conditions in the IA task reflects better attention to internal mental states.  

 

Distributed and common brain regions contributing to unique brain patterns. Classifier 

importance maps that identified the voxels most important in distinguishing the attentional 

states43 were unique for each participant and distributed throughout the brain (Fig. 3a). For initial 

characterization of brain regions that supported classification and were common across 

individuals, a frequency map was computed representing the sum of individual importance maps 

(Fig. 3b). This indicated that no brain region was important for all 14 participants in any mental 

state (maximum frequency≤10, Fig. 3b, SI-Fig. S2a, SI-Fig. S2b), and frequency histograms 
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showed that most voxels were important for only 1-3 participants (SI-Fig. S2c-e). Voxels that 

were important for breath-focused attention in a higher frequency of participants (N≥5) were 

located in the medial PFC (extending to the perigenual anterior cingulate cortex and the anterior 

mid-cingulate cortex), left dorsolateral PFC, bilateral occipital pole, and right cerebellum. 

Higher-frequency importance voxels for mind wandering (N≥5) were located in bilateral 

superior temporal gyrus, right lateral frontal pole, left precentral and postcentral gyrus, and areas 

of the PFC (left ventromedial, right anterior frontal pole, and right dorsolateral). Higher-

frequency importance voxels for self-referential processing (N≥6) were located in bilateral 

dorsomedial PFC, right orbitofrontal cortex, bilateral dorsolateral PFC, left anterior medial PFC, 

right supramarginal gyrus, and bilateral precentral gyrus (Fig. 3b, SI-Fig. S2, SI-Table S3).  

 

Step 2: Decoding the focus of attention during breath meditation 

 Individualized brain patterns for each participant were used to decode the focus of 

attention during 10 minutes of breath meditation, producing a second-by-second readout of 

internal attention states of attending to the breath, mind wandering, or self-referential processing 

(Fig. 4a-d). Classifier decisions at each time point were based on the class with the highest 

classifier evidence values (SI-Fig. S3). From these data, “mental events” were defined whenever 

there were 3 or more consecutive time points that were classified as belonging to the same 

mental state (Fig. 4b). 

 

Step 3: Quantifying metrics of internal attention during breath meditation 

 Based on MVPA decisions of mental states present during meditation from Step 2, we 

computed novel metrics of attention during meditation for each participant, including percentage 
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time spent engaged in each mental state, number of mental events (or discrete periods engaged in 

each mental state), the duration of each mental event, and the variance of the durations (SD; see 

Online Methods for data reduction). For breath-focused meditation, we hypothesized that 

participants would direct their attention more to the breath than engaging in mind wandering or 

self-referential processing. Therefore, compared to the other mental states, participants should 

show greater: 1) percentage time attending to the breath, 2) number of breath mental events, 3) 

mean duration of attention to the breath, and 4) variance in duration on the breath (greater inter-

trial variability due to longer durations). 

 

Mental state profiles during breath-focused meditation. Group-averaged attention 

metrics during the 10-min breath meditation period are shown in Fig. 5. Attention metrics 

differed in the percentage time engaged in each mental state (F2,12=8.93, p=0.001), the mean 

duration of mental events (F2,12=6.47, p=0.005), and the mean variance of event durations 

(F2,12=4.20, p=0.026). Consistent with our hypotheses, we found that during meditation, 

participants spent more time paying attention to their breath compared to mind wandering or 

self-referential processing (t13s>3.18, ps<0.007). On average, the 10-min meditation periods 

contained 56.4 mental events of at least 6-s each (SD=11.26). Although the mean number of 

events across mental states did not differ significantly (p=0.31), when participants attended to the 

breath, the mean duration of those events (10.9s [3.5]) was longer than for mind wandering 

events (8.1s [1.6], t13=3.28, p=0.006) and marginally longer than self-referential processing 

events (9.0s [2.6], t13=1.94, p=0.07). Similarly, the variability of event durations tended to be 

greater for attention to the breath compared to both mind wandering (t13=1.92, p=0.08) and self-

referential processing (t13 = 2.46, p=0.029). This greater variance was likely due to the longer 
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duration of breath events. See SI-Table S4 for full statistics and SI-Fig. S4 for exploratory tests 

between groups.  

 

Distraction from breath and mental state fluctuations. When participants became 

distracted from their breath, the distraction period lasted for an average of 20.4s (SD=4.77), and 

was marginally more likely to be attributed to entering a state of mind wandering (mean 

count=8.8 [2.46]) than self-referential processing (mean count=7.0 [2.57]; t1,13=1.90, p=0.08). 

When engaged in mind wandering, participants were equally likely to transition to mental states 

of breath (mean count=8.6 [2.77]), or self-referential processing (mean count=7.9 [3.85], 

p=0.68), and when engaged in self-referential processing, they were equally likely to transition to 

breath (mean count=7.5 [2.85], or mind wandering (mean count=7.4 [2.90], p=0.92).  

 

Criterion validity of EMBODY Task metrics. To validate whether EMBODY Task 

metrics accurately reflect attentional states during meditation, we correlated percentage time 

spent in each mental state with 1) subjective ratings of attention from the meditation period, 2) 

reported lifetime meditation hours, and 3) trait measures of interoception44 and mindfulness45. 

After the meditation period, participants rated the percentage time they paid attention to their 

breath and to their thoughts, and these ratings were not correlated with any attention metrics 

(ps>0.68). However, within meditators, total reported lifetime meditation hours were positively 

correlated with percentage time spent attending to the breath (rho7=0.71, p=0.047; Fig. 6a) and 

negatively correlated with percentage time engaged in self-referential processing (rho7=-0.71, 

p=0.047; Fig. 6b) during the meditation period. The difference between these correlations was 

significant (z=2.78, p=0.005). Lifetime practice and percentage time engaged in mind wandering 
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were not significantly correlated (rho7=-0.17, p=0.69). Furthermore, demonstrating specificity of 

the task metrics, the amount of lifetime hours meditating specifically on breath sensations was 

positively correlated with percentage time attending to the breath during the meditation session 

(rho7=0.74, p=0.037; Fig. 6c) and negatively correlated with self-referential processing (rho7=-

0.91, p=0.002; Fig. 6d; difference between correlations z=1.92, p=0.056). Lifetime hours 

meditating on other body sensations or other meditation practices were not associated with any 

mental state during meditation (Fig. 6e-f; body ps>0.35; other practice ps>0.38).  

Self-reported attention regulation, an interoception subscale assessing sustained attention 

to the body44, was negatively correlated with percentage time attending to breath (rho13=-0.58, 

p=0.028; see SI-Methods and SI-Table S5 for correlations with all subscales). Trait 

interoception and mindfulness subscales were not correlated with meditation period ratings or 

lifetime hours of meditation practice (ps>0.19). Finally, no other EMBODY metrics (number of 

events, mean duration, variance of duration, distraction from breath) were significantly 

correlated with meditation period ratings or lifetime meditation hours.  

 

DISCUSSION  

This study was the first to test the EMBODY framework, where neural data were used to 

identify participant-specific brain patterns associated with five types of internal attention. These 

unique neural patterns were then used to track moment-by-moment fluctuations in mental states 

during breath-focused meditation. To our knowledge, this study provides the first demonstration 

of an objective measure that enables continuous observation of the fluctuating mental states that 

occur during an individual meditation session. By making these invisible internal processes 

visible and quantifiable, we were able to compute novel profiles of attention during meditation, 
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including the percentage of time engaging in breath attention, mind wandering, or self-referential 

processing. Across all participants with distinguishable brain patterns (N=14/16), attention 

profiles indicated they engaged more with the breath vs. other states (greater percentage of time 

attending, mean duration of breath events, and variability of duration), which suggests they were 

able to implement the meditative goal of sustaining more attention to the breath. Further 

demonstrating criterion validity of task metrics, experienced meditators who practiced more 

hours of meditation in their lifetime were able to focus longer on the breath and less on self-

referential processing, during the 10-minute meditation session. The attention metrics may also 

show specificity, as the hours of breath-focused meditation in particular (and not other areas of 

the body) predicted greater percentage time attending to the breath and decreased self-referential 

processing. These results support theories that meditation can decrease self-relevant thought21, 

which is particularly relevant for clinical populations characterized by maladaptive self-focused 

emotions and thoughts (e.g., depression and anxiety)13. Together, these findings suggest the 

EMBODY framework can indeed track distinct and fluctuating mental states during meditation, 

which holds promise for elucidating the basic attentional mechanisms through which meditation 

may improve health. 

Distinct fMRI brain patterns were distinguishable by MVPA for five internal attentional 

states, even without changes in the external visual environment while participants’ eyes 

remained closed. That is, when given auditory instructions, participants could change their 

internal focus of attention and produce patterns of brain activity that were stable and distinct 

enough to be recognized by pattern classifiers for attending to sensations of the breath or feet, 

engaging in mind wandering or self-referential processing, and listening to ambient sounds. 

Importantly, this approach was feasible for nearly all participants including every experienced 
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meditator and most (75%) of the matched control participants. Notably, the neural patterns were 

unique for each mental state in each participant. Important voxels that contributed to accurate 

classification were distributed across many areas of the brain and tended to be unique for a given 

participant. 

Although this framework emphasizes the individual differences in brain patterns for 

person-specific decoding of meditation, we initially characterized brain regions that may 

contribute to accurate classification in a higher proportion of participants. For breath-focused 

attention, a large cluster spanned the medial PFC (mPFC) and consisted of negative importance 

voxels, indicating that the average z-scored activation was lower than mind wandering and self-

referential processing. This region included the anterior mPFC, which overlapped with a positive 

importance cluster for self-referential processing, and is a key hub of the DMN midline core that 

reflects self-relevant affective decisions32. Less mPFC activation may represent an important 

signal in distinguishing breath vs. self-referential processing, and is consistent with studies 

showing decreased mPFC activation after meditation training29. Surprisingly, we did not find a 

consistent cluster in the insula which is important for interoception30, and this null result may 

stem from the lack of an external stimulus (often used as a comparison condition29). Self-

referential processing also involved a large negative importance cluster in the dorsomedial PFC, 

which is typically active in the task-positive EFN. Finally, the most prevalent regions for mind 

wandering included bilateral superior temporal gyrus. The temporal regions may potentially be 

associated with the dorsal mPFC subsystem of the DMN which includes the lateral temporal 

cortex and temporal pole, and is thought to be involved in making judgments about present 

mental states32. Research with larger samples may further characterize group-level neural 

patterns that can be used to decode meditation. 
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Supporting construct validity of the IA task, classification accuracy of brain patterns 

(which indicates reliability and distinctiveness) was positively correlated with participants’ 

subjective attention ratings, and suggests that greater classification accuracy indeed reflected 

better internal attention. Similar to previous research46, these results demonstrated that neural 

signals may differentiate interoception to distinct areas of the body (breath vs. feet) . This 

approach can thus potentially be used to track attention during body-based practices such as the 

body scan24,25, which may improve health through cultivating understanding of homeostatic 

information present throughout the body18,19. These findings also demonstrated that the brain 

pattern for mind wandering, or the “movement” from one mental state to another47, was distinct 

from self-referential processing, or engaging in mental content that is personally significant31. 

With this distinction, the wandering nature of attention can be disentangled from the contents of 

what the mind wanders to, which is often self-relevant processing31. This framework thus allows 

us to decode mind wandering and self-referential states continuously through time, which 

improves the temporal resolution of measuring mind wandering (that typically relies on 

intermittent probes33,48), and can be a tool to decode the contents of clinically-relevant resting 

state activity31,41. 

The IA task yielded distinct brain patterns for every experienced meditator tested, which 

supports the idea that internal attention can be trained and stabilized through meditation practice. 

Distinct brain patterns were also found for most matched controls, which suggests that even 

people without formal training can sustain internal attentional focus for relatively short 

durations, although some may need further training to yield distinct neural patterns. Together, 

this holds promise for testing longitudinal effects of mindfulness-based interventions with 

novices, investigating group differences between meditators and novices, and eventually linking 
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changes in attention during meditation to clinical outcomes. The framework should be validated 

in larger and more diverse samples, including clinical populations that may benefit from 

mindfulness-based interventions. Although these early results are promising, the IA task should 

be developed to increase classifier performance, including optimizing trial conditions and 

durations, testing different MVPA algorithms, integrating psychophysiological and behavioral 

data, and using real-time neurofeedback34 to communicate measurements of internal attentional 

states to the participants during the experiment. However, very high accuracy of these mental 

states is likely unrealistic due to the difficulty in maintaining focused attention (25-50% of 

waking moments are estimated to involve mind wandering48). The framework should also be 

validated in neuroimaging modalities where meditators can sit upright with less sound 

distraction, such as electroencephalography and magnetoencephalography42,46. 

Subjective ratings of attention after the meditation period did not correlate with 

EMBODY metrics. This may reflect that participants show less accurate introspection for longer 

durations (10 minutes) compared to the shorter IA task trials (16-50s). Ratings assessing longer 

periods of time may be influenced by peak and recent experiences49, emphasizing the need for 

objective measures that continuously assess meditation practice. EMBODY metrics also did not 

correlate with trait questionnaires of interoception or mindfulness in the expected direction, 

showing a negative correlation between percentage time attending to the breath and attention 

regulation, or sustaining attention to the body. Trait measures may assess higher-level constructs 

that may not directly correspond to fluctuating attention states during a single meditation session, 

and participants may vary in their ability to accurately report attentional qualities17. Given the 

high cost and limited availability of fMRI-based measures, more self-report and behavioral 
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measures should be validated with EMBODY metrics to identify which ones can be more widely 

used as objectively validated research outcomes.  

Overall, the initial EMBODY framework shows promising ability to distinguish unique 

brain patterns of internal attention, which can then be used to track mental states during 

meditation. Meditation practices are multi-faceted in the qualities of attention they train, what 

internal and external stimuli they are applied to, and how they are implemented in clinical and 

general populations. This may partly explain why clinical outcomes are heterogenous, and effect 

sizes of mindfulness-based interventions are moderate17. The framework can thus be adapted to 

measure other meditative attentional qualities (e.g., meta-awareness33 and nonjudgment24,25), as 

well as different types of meditation practice (e.g., open monitoring3,7 and compassion4,6), and be 

used to track person-specific skills and clinical outcomes. By developing measures to precisely 

assess the attentional qualities cultivated by meditation, we will gain the measurement power 

needed to rigorously test the mechanisms through which meditation may improve health and 

well-being. Finally, the EMBODY framework highlights that each individual’s brain signatures 

and meditation practice are unique, which we hope will aid researchers and clinicians in applying 

precision medicine approaches50 to design interventions that will maximally benefit individuals 

in targeted and specific ways. 
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Figure 1. EMBODY Framework: Evaluating Multivariate Maps of Body Awareness to 

measure internal attention states during meditation.  

Step 1. Brain pattern classifier training. Machine learning algorithms are trained in fMRI 

neural patterns associated with internal mental states in the Internal Attention (IA) task. IA is 

directed via auditory instructions to pay attention with eyes closed to the breath, mind 

wandering, self-referential processing, and control conditions of attention to the feet and ambient 

sounds (see Fig. 2). Unique individualized brain patterns for each participant are learned using n-

1 cross-validation with 6 blocks of the IA task.  

Step 2. Meditation period classification. Neural patterns are collected during a 10-min 

meditation period (in this case, focused attention to the breath; administered in the middle of 6 

IA blocks), and are decoded by multi-voxel pattern analysis (MVPA)37 using the unique brain 
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patterns learned in Step 1. Meditation is characterized second-by-second into mental states of 

attention to breath (B), mind wandering (MW), or self-referential processing (S), producing a 

read-out of distinct and fluctuating mental states during meditation.  

Step 3. Quantification of internal attention during meditation. From the temporal read-out of 

meditative mental states in Step 2, novel attention metrics during meditation can be quantified 

including percentage time spent in each mental state, number of times engaged in each mental 

state (“events”), and mean duration spent in each mental state. See Online Methods for details. 
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Figure 2. EMBODY Step 1: Classifier training of internal mental states. (a) Internal 

Attention (IA) task. With eyes closed, participants were directed via 2-s auditory instructions to 

pay attention to five internal mental states for brief time periods (16-50s). The IA task directed 

attention to three mental states relevant for breath meditation (Breath, mind wandering [MW], 

and self-referential processing [Self]), and to two control mental states (attention to the Feet 

[another area of the body] and ambient MRI Sounds [consistent external distractor]). Example 

auditory instructions are displayed in quotes. MW was induced by instructing participants to stop 

paying attention and let their minds attend to whatever they wanted. Conditions were randomized 

over six IA blocks in four orders, with 72s of data collected from each condition in each block. 

For the last half of IA task trials, subjective ratings of attention were collected after each trial 
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(except MW) using a button box (1 = less, 4 = more). See Online Methods and SI for full 

details. (b) From the IA task, the prediction accuracy of the classifier for identifying internal 

states of attending to the Breath, MW, and Self, and control conditions of attending to the Feet 

and Sounds. Box–whisker plots depict the median (black line), ±1.5 interquartile range (box), 

and minimal and maximal values (whiskers) of the mean prediction accuracy for all data in 

each condition (432s, TR=1s) across all subjects. Dots represent values >±1.5 interquartile 

range. Statistical significance was determined by a one-sample two-sided t-test against 

theoretical chance-level for classification of 5 categories (20%, denoted by dashed line). *** 

t15=4.65, p<0.001, **** ts15>5.67, ps<0.0001. (c) Classifier training accuracy at the trial-level 

was positively correlated with subjective ratings of attention (administered during the last half of 

IA task trials, collapsed across all conditions except MW). * p<0.05. 
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Figure 3. Classifier importance maps representing voxels that accurately distinguish internal 

mental states. a) Subject-level importance maps showing individualized brain patterns 

representing voxels that are important for distinguishing neural signatures of attention to the 

Breath, MW, and Self. For each task condition, importance values were computed by 

multiplying each voxel’s classifier weight for predicting the condition and the average activation 

during the condition43. The maps were thresholded at ±2 SD and displayed on the MNI152 

template to identify the most important voxels for each participant. Orange importance voxel 

indicate positive z-scored average activation values, and blue importance voxels indicate 

negative z-scored average activation values. b) For initial characterization of brain regions that 

supported classification and were common across individuals, group importance frequency maps 

indicate the number of participants for which the voxel accurately distinguished each mental 

state. All importance voxels were summed, irrespective of average positive or negative z-scored 

activation. Frequency maps were also computed that independently summed positive (SI-Fig. 

S3a) and negative (SI-Fig. S3b) z-scored activation voxels, as well as histograms of frequency 

counts (SI-Fig. S3c-e). Note that the maximum frequency for any importance map was 10/14.  
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Figure 4. EMBODY Step 2: Decoding the internal focus of attention during breath-focused 

meditation using individualized brain patterns. Based on each participant’s unique brain 

signatures for Breath, MW, and Self, classifier decisions were made for each time point of fMRI 

data (TR=1s), producing a read-out of attention states during breath meditation. The middle of 

the meditation period is displayed for two meditators (a, b) and their matched controls (c, d). 

Mental events were quantified as 3 or more consecutive decisions from the same mental state 

(b), and were used to compute metrics of attention during meditation in Step 3. See Online 

Methods for details. 
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Figure 5. EMBODY Step 3: Quantification and mental state profiles of internal attention 

during meditation. Based on the read-out of mental states and event specification from Step 2, 

metrics of attention during breath meditation were quantified for each mental state: percentage 

time spent in each mental state (Breath, MW, or Self), the number of events, mean duration of 

events, and variability (standard deviation or SD) of duration of events. Box–whisker plots 

present the median (black line), ±1.5 interquartile range (box), and minimal and maximal 

values (whiskers). Dots represent values >±1.5 interquartile range. See SI-Table S4 for full 

metric statistics. 

* paired t13=2.46 , p=0.029, after one-way ANOVA F2,12 = 4.20, p=0.026 

** paired ts13≥3.18, ps≤0.007, after one-way ANOVA Fs2,12≥6.47, ps≤0.005 
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Figure 6. Mental states during meditation and lifetime meditation practice. Meditation 

metrics from the EMBODY Task were significantly predicted by lifetime hours of meditation 

practice. Total lifetime hours of meditation practice in general were associated with (a) greater 

percentage time attending to the breath and (b) less percentage time engaging in self-referential 

processing during meditation. Demonstrating specificity, lifetime hours of meditating 

particularly on breath sensations were associated with (c) greater percentage time attending to 

the breath and (d) less percentage time engaged in self-referential processing during meditation, 

while hours meditating on other bodily sensations were not associated with either (e) attending to 

breath or (f) self-referential processing. Ranks of both lifetime meditation hours and EMBODY 

metrics are displayed. Numerical values associated with ranks 1, 5, and 8 of each variable are 

displayed to aid interpretation of data. 

* p<0.05, ** p<0.01 
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ONLINE METHODS 

General framework and design rationale. The EMBODY framework was designed for 

decoding mental states during meditation practice at the individual level, that could also produce 

attention metrics for analysis at the group level (Fig. 1). We chose a number of design features to 

fit these purposes. Our main goal was to test the general framework in the entire sample to see 

whether: 1) unique brain patterns of internal attention states could be identified, 2) internal 

attention profiles would differ during meditation, and 3) attention metrics during meditation 

would correlate with subjective measures. Individuals were recruited from two distinct groups to 

test the framework. First, meditators were included because their experience in directing and 

sustaining internal attention would increase the likelihood of producing distinct neural patterns. 

Second, most mindfulness-based interventions study novice participants with limited meditation 

experience, so novice control participants were inlcuded to examine whether this framework 

could inform future clinical studies of meditation. Therefore, the approach was tested in 

individuals from both meditator and novice groups, while group-level statistics were computed 

for the entire sample to test construct validity and inform future research. 

 

Participants. Participants recruited were healthy adults age 25-65 (with no medical, 

neurological, or psychiatric illness) who were not currently taking psychotropic medications, 

non-smokers, and MRI-compatible. Meditators were recruited from Bay Area meditation centers 

based in the Vipassana or Zen traditions (which train attention to bodily sensations) through 

flyers, online postings, and word of mouth. They were included if they had a consistent 

meditation practice (³90 min/week) in the past 5 years, with at least 14 days of silent retreat 

practice, and at least half of practice included attention to breath and bodily sensations. Control 
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participants were recruited through flyers and online postings, and were included if they had not 

engaged in regular meditation practice or courses, yoga, or other mind-body practices (which 

was defined as >20 min at least twice weekly). Controls were age (within 5 years) and gender-

matched to meditators.  

Participants included 8 meditation practitioners (1 female, 1 non-binary person, 6 male, 

mean age = 38.4 [range 28-61], race/ethnicity: 6 White, 2 multiracial [African American/White 

and Asian/White]) and 8 matched novice control participants (mean age = 38.3 [range 25-63], 

race/ethnicity: 6 White, 1 Asian, 1 Latinx/Hispanic). Average lifetime meditation practice in 

meditators was 3495 hours (range 509-6590). See SI-Table S6 for full demographics and SI-

Table S7 for meditator practice information. Two additional novices were excluded from the 

inability to align images due to excessive movement, and incorrect gender-matching to a 

meditator. All participants provided written informed consent in accordance with a protocol 

approved by the Institutional Review Board of the University of California, San Francisco. The 

study was registered at clinicaltrials.gov (NCT03344081).  

 

Procedure. Eligibility was assessed by online questionnaire and phone interview, and eligible 

meditators completed the lifetime meditation practice interview over the phone. Surveys were 

administered online and completed within one week of the experiment. Participants were 

consented, trained in MRI task procedures, and then completed a 2-hour MRI protocol. They 

practiced the Internal Attention (IA) task, learning to direct attention to five internal states 

(sensations of the breath, feet, mind wandering, self-referential processing, and sounds; Fig. 2a). 

They practiced one short block of the IA task, one block with rating attention after each trial 

using a button box, and were given instructions for the breath-focused meditation session (~30 
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min total). They identified the area of the body where they felt the breath the most strongly (e.g., 

nose, throat, chest), and were instructed to keep their attention in that location for the remainder 

of the experiment. To engage in self-referential processing, participants generated 5 events from 

the past week, and 5 events that would occur in the next week during the training session. 

Experimenters ensured both meditators and novices fully understood the instructions. They were 

paid $65 for participation and ≤$20 for travel expenses after the experiment. 

 

fMRI Paradigm. Overall Framework. The EMBODY Framework used multi-voxel pattern 

analysis (MVPA)36 with fMRI data to decode the focus of internal attention during meditation in 

3 steps: 1) individualized and distributed patterns of fMRI activity were identified for internal 

attention states relevant for breath meditation, 2) unique brain patterns from Step 1 were applied 

to a period of breath meditation to decode the focus of internal attention for each data point 

(600s), and 3) metrics of attention during meditation were computed from the decoded brain 

states (Fig. 1).  

Step 1 data: Internal Attention (IA) task. fMRI data from the IA task were used to train a 

machine learning classifier to learn neural patterns associated with five internal mental states. To 

create training data that most closely resembled brain activity during meditation, participants’ 

eyes remained closed the entire time, so the only stimulus change was their internal focus of 

attention. Neural patterns associated with breath, mind wandering, and self-referential processing 

were chosen to be most relevant for decoding the meditation period, which modeled the intended 

focus of attention during meditation (breath), and two common distractors from the breath (mind 

wandering and self-referential processing)3,47. Neural patterns associated with attention to feet 
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and awareness of ambient sounds (consistent sounds from the MRI) were chosen as control 

conditions to improve the classification specificity of the desired brain states in the IA task.  

In the IA task, participants kept their eyes closed and received randomized 2-s auditory 

instructions to pay attention to 1) sensations of the breath (Breath), 2) sensations of the (Feet), 3) 

to stop paying attention and let their minds go wherever they would like (mind wandering or 

MW), 4) self-referential processing regarding the past, present, and future (Self), and 5) ambient 

sounds in the MRI scanner (Sounds; Fig. 2a). Instructions were also presented visually, which 

participants could briefly view if they forgot what to attend to. Six blocks of the IA task were 

administered, and participants were randomized to one of 4 stimulus order sets.  

Each block contained 20s of baseline period (black screen) at the beginning and end, and 

consisted of 13 trials per block, resulting in 72s/condition within each block (balanced across 5 

conditions). This yielded 432 total training data points for each condition over the experiment. 

Trial durations in the IA task ranged from 16-32s for attending to breath, feet, and sounds (3 

trials/block each; every even-numbered trial length was randomized and administered 

twice/condition across the experiment), and 22-50s in MW and Self (allowing more time for 

MW and self-relevant modes to occur, 2 trials/block each, covering most of the duration range 

across the experiment). In the last three IA blocks, participants subjectively rated how well they 

paid attention after each trial using a button box (How well did you pay attention? 1 = less 

attention, 4 = more attention), and were encouraged to use the full range of responses. 

Participants also completed 1-2 blocks of a visual search task51, which was not analyzed for this 

paper. 

Step 2 data: Meditation Period. Participants engaged in 10 min of focused attention to 

the breath meditation in 2 blocks, which were in the middle of the 6 IA blocks. The meditation 
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period was split into two blocks (4 and 6 min) to help control participants stay engaged in the 

task. Participants were instructed to keep their eyes closed and pay attention to the sensations of 

the breath, and if their minds wandered, to return attention to the breath. For each block, they 

received a 6-s instruction at the beginning, and a 2-s reminder to pay attention one min before the 

end. After the meditation period, participants verbally rated the percentage time they paid 

attention to the breath and thoughts for each block. 

Data acquisition. Experiments were run using E-Prime (Psychology Software Tools). 

Neuroimaging data were acquired with a 3 T MRI scanner (Siemens Prisma) using a 64-channel 

head and neck coil. We first collected scout images to align axial functional slices to the anterior 

commissure–posterior commissure line. A high-resolution 1×1×1 mm MPRAGE T1 anatomical 

scan was acquired for offline spatial registration. Functional images were acquired using a 

multiband gradient-echo EPI sequence52 (2.4×2.4×2.4 mm, TE/TR = 30.2 ms/1 s, FOV=220 mm, 

92×92 matrix, 56 slices, multiband acceleration=4) that covered most of the brain. 

EMBODY fMRI data analyses: machine learning.   

fMRI preprocessing. Data were preprocessed in AFNI53, and were slice time corrected, 

aligned and motion-corrected to the first volume of the first EPI scan, and linearly de-trended in 

native space, respectively using 3dTshift, 3dAllineate, 3dvolreg, 3dDetrend. Subsequent pattern 

classification analyses were conducted using MVPA36 (The Princeton Multi-Voxel Pattern 

Analysis Toolbox https://github.com/PrincetonUniversity/princeton-mvpa-toolbox), in 

conjunction with in-house software using Matlab (MathWorks) and Python (for post-processing 

of meditation period classifications in Steps 2-3). 

Step 1 machine learning: Distinguishing neural patterns of internal attention. Using 
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preprocessed fMRI signal in native space, a pattern classifier was trained separately for each 

participant for trial periods from each condition (Breath, MW, Self, Feet, and Sounds; TR=1.0s, 

432s/condition) using penalized logistic regression with L2 regularization and a penalty 

parameter of 0.0154. Regularization prevents over-fitting by punishing large weights during 

classifier training54. Condition labels for all classification analyses were shifted in time by 6s to 

account for hemodynamic lag. A binary logistic regression (1 vs. the others) was run for each of 

the 5 conditions, resulting in continuous classifier evidence values for each condition at each 

time point in the experiment (SI-Fig. S3). The condition that was assigned the highest evidence 

value yielded the categorical decision from the classifier. We evaluated classification accuracy 

by training on five blocks of data (fMRI task runs) and testing on the novel sixth block. The 

blocks used for training were then rotated, and a new block of data was tested until all six blocks 

of data had been classified.  

Classification accuracy for each condition was computed for each participant (the 

percentage of accurate decisions output from the machine learning classifier). Group-level 

accuracy for each condition was tested with a one-sample t-test vs. 20% (theoretical chance level 

for 5 conditions), and the effect size was estimated with Cohen’s D. Individual-level accuracy 

was tested with a Chi-square test determining whether the number of accurate vs. inaccurate 

decisions in each condition were significantly above chance levels (chance distribution is 87 

accurate vs. 345 inaccurate decisions). Individuals that showed above-chance accuracy in 2/3 

categories for Breath, MW, and Self conditions were used for subsequent analyses including 

decoding meditation states (all 8 meditators and 6 of 8 controls; Table S2).  

IA ratings and classifier accuracy. Attention ratings were collected for the second half of 

trials (33/39 trials, excluding MW trials where participants were instructed to stop paying 
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attention and therefore no rating was administered). Within each subject, classifier accuracy was 

computed at the trial-level, and mean ratings were computed for each accuracy bin (10 bins from 

0-100%). The subject-level mean ratings were then averaged across all subjects within each bin, 

and a Pearson’s correlation was computed between classifier accuracy bin and mean ratings.  

Individualized brain pattern importance maps. Classifier importance maps were 

computed for each participant using classifier weight information which identifies which voxels 

were most important in distinguishing neural patterns of Breath, MW, and Self43. This approach 

identified voxels with “positive importance” that had a positive weight and a positive z-scored 

average activation value (indicating that it was more active on average), and voxels with 

“negative importance” that had a negative weight and a negative z-scored average activation 

value (indicating that it was less active on average)43. For display purposes, each individual’s 

importance values were non-linearly warped to the MNI152 2mm template using FSL55 

(FNIRT), smoothed with an 8mm Gaussian kernel, converted to z-scores (across voxels), and 

thresholded at ±2 SD to identify the most important voxels for each condition.  

Group-level importance frequency maps. To identify common brain regions that 

contribute to accurate identifying attention to Breath, MW, and Self, individual importance maps 

normed to the MNI152 template were summed to produce frequency maps and displayed with 

FSL. Each voxel indicates the number of participants for which the voxel is important in 

distinguishing each mental state. Frequency maps were computed for all importance voxels, as 

well as positive and negative importance voxels, and frequency histograms for each map were 

created. Regions were identified with frequencies ≥5 or 6 (at least half of the maximum 

frequency found in each mental state) and a cluster extent threshold of 20 contiguous voxels (160 

mm3).  
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Step 2 machine learning: Decoding the internal focus of attention during breath 

meditation. Individualized brain patterns learned from Step 1 were applied to the 10-min 

meditation period to decode the internal focus of attention. The classifier was trained with all 5 

mental states from the 6 blocks of the IA task, and decoded with the 3 states that were most 

relevant for breath-focused meditation: Breath, MW, and Self. For each data point during 

meditation (TR=1s, n=600, excluding data points from instruction periods), the classifier output 

a categorical decision of whether internal focus was on the Breath, MW, or Self (as well as 

continuous evidence values for each mental state). This produced a read-out of mental states 

during meditation over time.  

To ignore spurious measurements of brain states that may fluctuate from one time point 

to the next, we focused our analyses on relatively stable periods. We defined a “mental event” 

for a given category as the classification of 3 or more consecutive time points for that category. 

To facilitate this, we smoothed the data such that a single incongruous decision between two 

events of the same type (e.g., MW event – Self decision – MW event) were relabeled according 

to the category of the surrounding events (e.g., Self => MW; average data points smoothed = 

1.3%, SD = 0.41). Events were then quantified as 3 or more consecutive decisions of the same 

category, excluding any data that did not meet these criteria (average data excluded = 15.7%, SD 

= 4.82).  

Step 3: Quantify internal attention metrics during meditation. From the cleaned temporal 

readout of mental states during meditation from Step 2, novel metrics of internal attention during 

meditation were computed for each participant. For each mental state, percentage time engaged, 

number of events, mean duration of events, and variability (SD) of event duration were 

computed. The total number of mental events and mean duration of distraction from breath were 
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also calculated. Data were analyzed at the group level by testing for differences in metrics 

between conditions (Breath, MW, Self) with a one-way ANOVA. To test our main hypotheses 

that breath-focused meditation would result in significant differences between Breath metrics vs. 

the other mental states, significant results were followed up with planned pair-wise t-tests of 

Breath vs. MW and Breath vs. Self. Fluctuations between mental states were quantified by 

counting the number of transitions from each mental event (Breath, MW, Self) to the next mental 

event (Breath, MW, Self). For each mental state type, we tested the difference in the mean counts 

of subsequent transitions to the other mental state types (e.g., after Breath events, the difference 

in mean count between transitions to MW and Self), using pair-wise t-tests. Data were analyzed 

in SPSS (v. 24), figures were created with R, and brain maps were displayed using AFNI or 

FSLview.  

 

Construct validity with subjective measures. To assess construct validity, EMBODY Task 

metrics were correlated with subjective measures of meditation period ratings, lifetime 

meditation hours, and trait questionnaires of interoception and mindfulness. Meditation period 

ratings. After the two meditation blocks, participants rated for each block the percentage of time 

attending to breath and to thoughts, and average ratings were then computed. Lifetime meditation 

hours. Through phone interview, meditators reported the years of consistent practice, the average 

weekly minutes of practice (individual and group), and meditation hours during retreat and 

monastic practice. They reported an estimate of how much practice was primarily focused on 

breath sensations, other bodily sensations, and other meditation practices such as lovingkindness 

or mantra practice (see SI-Methods). Based on this report, meditation practice hours were 

computed for total lifetime, breath, body sensations, and other practices. Due to the small sample 
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size, correlations with EMBODY metrics were conducted with non-parametric Spearman’s rho. 

Differences between correlations were tested with the test of difference between two dependent 

correlations with one variable in common56. Trait Questionnaires. Trait interoception and 

mindfulness were measured with the Multidimensional Assessment of Interoceptive Awareness 

(MAIA)44 and Five Facet Mindfulness Questionnaire (FFMQ)45, respectively. A priori 

hypotheses were strongest for subscales that assessed sustained attention, particularly to the 

body. These included the MAIA Noticing and Attention Regulation subscales, and the FFMQ 

Observing and Acting with Awareness subscales. All other subscales were correlated with 

EMBODY metrics for exploratory purposes only (see SI-Methods and SI-Table S5). 

 

Data sharing and code availability. MRI data will be available for participants who consented 

to share data at neurovault.org (will upload when paper is published). Code for the EMBODY 

Task, MVPA analysis, and post-processing are available upon request.  
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