
 

 

Mitigating Challenges of 
Cloud “Bursting” 

      

 

  

info@spillbox.io | spillbox.io 



 

©Spillbox.io 2 

Introduction 
Despite the stellar rise of modern Cloud computing since the early 2000’s, there are still 
applications and entire industry segments that primarily rely on traditional On-Premise/Private 
Datacenter computing. Industries requiring high compute resources such as EDA and 
semiconductor development are facing challenges in utilizing advantages of the Cloud: 

• Difficulty of implementing Cloud “bursting” and maintaining consistency of data between 
On-Premise and the Cloud 

• Lower performance in running NFS based traditional workloads on scaled-out Elastic File 
System in the Cloud 

• Additional storage, and associated cost, needed to move data to the Cloud 

• Security exposure with putting libraries, IP and design on the Cloud 

• Dependency on a particular Cloud provider, which results in lock-in and hence higher 
cost due to lack of competition 

Spillbox recognized that the essence of the problem is a tie between compute and data/storage 
and that by removing this co-location dependency, the compute can dynamically scale by 
utilizing resources in the Cloud or an underutilized datacenter. The core of the Spillbox solution 
is the NFS-based network file system that allows the majority of data (>90%) to remain at the 
source while the compute moves to the Cloud. The entire process of dynamically acquiring 
compute resources in the Cloud and moving only the necessary data is automated, making it 
extremely easy to manage workflows. 

 

At Spillbox, we have been working with semiconductor and EDA companies to prove the 
feasibility of our solution. This paper highlights the experiments that we completed and the 
results from those experiments with one company (Customer X).  
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Design Setup 
Two designs were used for this experiment with the focus on physical design. One is the Bitcoin 
design, which is a low power ASIC design and the second is the NVDLA, which is Nvidia Deep 
Learning Accelerator design. 

Prior to our experiment, Customer X had ported Bitcoin design to the AWS Cloud (without 
Spillbox), obtained performance results and quantified additional effort and storage required to 
do the porting for that design. In contrast, Customer X was porting the NVDLA design to the 
Cloud for the first time. These two designs give a good indication of some of the ways in which 
customers can benefit using Spillbox technology.  
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Tools & Testbed Infrastructure 
Industry standard tools from Synopsys are used for this experiment. These are:  

1. Design Compiler (2016.12-SP2) 
2. IC Compiler II (2016.12-SP2) 
3. Formality (2016.12-SP2) 
4. Primetime (2016.12-SP2) 

The table below represents the testbed infrastructure which shows the different File Systems 
used and also CPU cores per socket, which were 18 for on-premise and 16 for AWS Cloud with 
and without Spillbox solution.  

 

  

On-Prem Manual on AWS 
(without Spillbox) Spillbox on AWS

AWS Instance Type N/A r4.16xlarge r4.16xlarge

CPU – vCPUs 36 64 64

CPU – threads per core 1 2 2

CPU – cores per socket 18 16 16

CPU - sockets 2 2 2

CPU – model E5-2697 v4 @ 2.30GHz E5-2686 v4 @ 2.30 GHz E5-2686 v4 @ 2.30 GHz

CPU – L1d 32K 32K 32K

CPU – L1i 32K 32K 32K

CPU – L2 256K 256K 256K

CPU – L3 46080K 46080K 46080K

Memory – online 252G 488G 488G

OS CentOS 6.6 CentOS 7.5 CentOS 7.6

Filesystem NFS (Tier 2) EFS SPLFS*
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Experiment 1: Bitcoin Design 
The Bitcoin microarchitecture is shown below. 

1. BIT_SLICE is the fundamental block and consists of SIPO (Serial In-Parallel Out) block, 2 
memories and PISO (Parallel In-Serial Out) block 

2. BIT_TOP includes 32 BIT_SLICE instances, in-addition to SIPO and PISO blocks 
3. BIT_COIN includes 16 BIT_TOP instances, along with PISO and HASH blocks 

 

 

Details related to the size of the Bitcoin design are shown below: 

Design Type Low Power ASIC 

Technology Node 32nm 

Technology Libraries Synopsys SAED32 

Total Number of Nets 174.5K 

Total Number of Pins 1.02M 

Hierarchical Cell Count 5.7K 

Hierarchical Port Count 163.0K 

Leaf Cell Count 244.8K 
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Performance Benchmarks 
The table below summarizes the total time it took to run the complete backend physical design 
in three scenarios. 

1. On-prem 
2. On AWS Cloud 
3. On AWS Cloud using Spillbox solution to run these EDA tools 

 

Initial concern of the Customer X was that there will be a significant degradation of 
performance with the Spillbox solution where the data (that remains on-premise) is accessed 
via WAN while compute is moved to the Cloud. However, based on the test results, we see 9.7% 
improvement when running on AWS Cloud with Spillbox (data on-premise) compared to running 
on AWS Cloud without Spillbox (data in the Cloud). The reason for this improvement is because 
patented technology used in Spillbox File Server (SPLFS) that better handles the NFS-based EDA 
workloads compared to Elastic File Server (EFS), which is optimized for scaled-out designs. 

We also see a performance improvement of about 7.6% compared to the base case i.e. running 
the design on-prem. The primary reason for this improvement is because Spillbox FS can make 
use of Cloud’s NVMe infrastructure to get better IOPs on the Cloud, compared to on-prem. 

In addition to the compute run time, in AWS without Spillbox flow, user is responsible for moving 
required data to the Cloud. This is generally done manually using some scripts by DevOPs or 
syncing the entire filesystem which could be quite large and expensive. 

 

  

Metrics On-Prem
(hrs)

Manual on 
AWS (hrs)

Spillbox on 
AWS (hrs)

% Delta 
VS AWS

% Delta
VS On-Prem

Bitcoin 
Design

Elapsed Time 22.19 22.71 20.50 -9.7% -7.6%
User CPU 31.48 29.35 28.68 -2.3% -8.9%

System CPU 0.37 0.67 0.65 -2.1% 77.9%
Total CPU 31.84 30.02 29.33 -2.3% -7.9%

CPU % 143% 132% 143% +8.2% 0.0%
Peak Memory 35.2 GB 35.5 GB 35.2 GB -0.8% 0.0%

Spillbox.io Total Data 
Transferred 10.0 GB

# of File Metadata 
Transferred 84.5K

# of Files 
Transferred 3.7K

# of Workers 1
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Experiment 2: Nvidia Deep Learning Accelerator (NVDLA) Design 
Below is the architectural block diagram of the NVDLA core. 

 

Details related to size of NVDLA design are shown below: 

Technology Node 32nm 

Technology Libraries Synopsys SAED32 

Block NVDLA_partition_a 

Total Number of Cells 1.13M 

Clock 1.1GHz 

FFs 408K 

 

Performance comparisons show about 4.9% improvement to on-premise.  

NVDLA design was not Cloud-ready and Customer X was porting this design for the first time. 
So, we looked at the metrics related to how easy it is to package it for the Cloud. Normally, 
moving the data to the Cloud is a manual process, but with Spillbox it is automated and only the 
data that is required for computation is moved by Spillbox to the Cloud.  
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computation cache.

Large NVDLA Model
The large-NVDLA model serves as a better choice when the primary emphasis is on high performance and versatility. Performance oriented
IoT systems may perform inference on many different network topologies; as a result, it is important that these systems maintain a high
degree of flexibility. Additionally, these systems may be performing many tasks at once, rather than serializing inference operations, so
inference operations must not consume too much processing power on the host. To address these needs, the NVDLA hardware included a
second (optional) memory interface for a dedicated high-bandwidth SRAM, and enables the ability to interface with a dedicated control
coprocessor (microcontroller) to limit the interrupt load on the main processor.

When included in the implementation, a high-bandwidth SRAM is connected to a fast-memory bus interface port on NVDLA. This SRAM is
used as a cache by NVDLA; optionally, it may be shared by other high-performance computer-vision-related components on the system to
further reduce traffic to the main system memory (Sys DRAM).

Requirements for the NVDLA coprocessor are fairly typical; as such, there are many general purpose processors that would be appropriate
(e.g., RISC-V-based PicoRV32 processors, ARM Cortex-M or Cortex-R processors, or even in-house microcontroller designs). When using a
dedicated coprocessor, the host processor still handles some tasks associated with managing NVDLA. For instance, although the
coprocessor becomes responsible for scheduling and fine-grained programming of the NVDLA hardware, the host will remain responsible
for coarse-grained scheduling on the NVDLA hardware, for IOMMU mapping of NVDLA memory access (as necessary), for memory
allocation of input data and fixed weight arrays on NVDLA, and for synchronization between other system components and tasks that run on
NVDLA.

Hardware Architecture
The NVDLA architecture can be programmed in two modes of operation: independent mode, and fused mode.

Independent.Independent. When operating independently, each functional block is configured for when and what it executes, with each block
working on its assigned task (akin to independent layers in a Deep Learning framework). Independent operation begins and ends with
the assigned block performing memory-to-memory operations, in and out of main system memory or dedicated SRAM memory.
Fused.Fused. Fused operation is similar to independent operation, however, some blocks can be assembled as a pipeline. This improves
performance by bypassing the round trip through memory, instead having blocks communicate with each other through small FIFOs
(i.e., the convolution core can pass data to the Single Data Point Processor, which can pass data to the Planar Data Processor, and in
turn to the Cross-channel Data Processor).

Headless NVDLA core

Configuration interface blockCSB / interrupt 
interface

Memory 
interface block

DBB interface

Second DBB 
interface (optional)

Convolution buffer Convolution core

Activation engine (SDP)

Pooling engine (PDP)

Local resp. norm (CDP)

Reshape (RUBIK)

Bridge DMA

Fig. 2 - Internal architecture of NVDLA core.

Connections
NVDLA implements three major connections to the rest of the system:

Configuration Space Bus (CSB) interface.Configuration Space Bus (CSB) interface. This interface is a synchronous, low-bandwidth, low-power, 32-bit control bus
designed to be used by a CPU to access the NVDLA configuration registers. NVDLA functions as a slave on the CSB interface. CSB
implements a very simple interface protocol so it can be easily converted to AMBA, OCP or any other system bus with a simple shim
layer.
Interrupt interface.Interrupt interface. NVDLA hardware includes a 1-bit level-driven interrupt. The interrupt line is asserted when a task has been
completed or when an error occurs.
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Here is quotation from Customer X’s designer, who worked on this. 

“NVDLA was not Cloud-ready when I received it. The design’s root directory contained a symbolic link to a 
separate partition housing the design’s reference libraries. In addition to this, two scripts within 
NVDLA_partition_a were independently hard-coding another external path. I leveraged the logs from the 
completed Spillbox run to identify all externally referenced files. With that information, I was able to quickly 
create a self-contained, Cloud-ready package for the traditional AWS baseline run (sans Spillbox).  

Without a tool like Spillbox, creating such a package requires either: 

1. A high-level of expertise and familiarity with all aspects of the design 
2. A brute force approach – potentially uploading hundreds of GBs of unnecessary data 
3. A painfully slow onion-peeling approach – uploading additional required files with each consecutive 

failed run 
 

I am all too familiar with both 2) and 3) from a previous project where I was tasked with packaging multiple 
designs for an AWS evaluation. One of those designs was “Bitcoin”, which I would estimate consumed 15 
manhours to debug/contain before an end-to-end AWS run came out clean.” 

This clearly indicates a reduction from 15 manhours to 1.5 manhours, which is a 90% 
improvement in the effort to run a design which is not Cloud ready. The Spillbox tool 
automatically identifies and pulls all the files required for a successful Cloud run.  

We also looked at the actual size of the external reference paths and compared it with the size 
of the data that was needed from those paths. The table below shows this comparison: 

 

Here the actual size of the external reference path is 22 GBytes, but what was needed to run the 
design was only 1.9 GBytes, which is 91% reduction. This shows another benefit of using 
Spillbox tool, which is reduced storage in the Cloud. This is again because rather than moving 
all the data manually to the Cloud, only the required data gets moved automatically by Spillbox. 

  

External Reference Path Actual Required

/slowfs/gts_lowpower/saed_lp_training_libs 8.4G 58M

/slowfs/gts_lowpower/training/machine_learning 13G 1.8G

/slowfs/gts_lowpower/training/tech_file_testing 1.1M 84K

22G 1.9G
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Summary 
This paper demonstrates how Spillbox can address some of the challenges associated with 
using the Cloud for semiconductor designs. The above two experiments done by Customer X 
using Spillbox solution shows three main benefits: 

(a) Improved performance when running backend physical design tools 
(b) Ease of migration and consistency of data between on-prem and Cloud 
(c) Reduced storage on the Cloud when using Spillbox, as it copies only what is needed 

Couple of other benefits with Spillbox solution are: 

(d) User and/or IT can control what files need to be sent to the Cloud. This addresses some 
of the security concerns. 

(e) User and the company are not bound by one Cloud provider, as it is quite easy to 
migrate. This provides flexibility to the customer and reduces their total cost of 
ownership. 

These two experiments show the saving in time and storage on single design. Real build and 
regression in semiconductor development are significantly more complex. Spillbox mitigates 
those complexities and 9-12 months of DevOps Cloud migration is reduced to days. 

In closing, I would like to add another quotation from Company X engineer 

“Overall, my experience with Spillbox has been quite good. Your product makes it very easy to burst 
workloads to the Cloud by taking the hassle out of packing and uploading software, data, etc. I am 
confident that even users with no Cloud experience can be up and running within 15 minutes.” 

 


