

July 31, 2025

California Regional Water Quality Control Board Los Angeles Region 320 W. 4th Street, Suite 200 Los Angeles, CA 90013 ATTN: Information Technology Unit

CHIQUITA CANYON LANDFILL, COMPLIANCE FILE NO. CI-6231 SEMIANNUAL MONITORING REPORT, FIRST AND SECOND QUARTER 2025

Per the Waste Discharge Requirements No. R4-2018-0172 (WDR) and Monitoring and Reporting Program No. CI-6231 (MRP), attached is the Chiquita Canyon Landfill Semiannual Monitoring Report for the First and Second Quarters of 2025 for your review. The results of the groundwater monitoring and sampling event conducted in January and April 2025 and other site monitoring activities conducted at the Chiquita Canyon Landfill are included in this report.

Per MRP Condition B.I.a, the Summary of Non-Compliance in Section 1.1 of this report summarizes the regulatory compliance record for the current reporting period.

I certify under the penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for known violations.

Please contact me at (661) 257-3655 if you have any questions or need further information.

STEVE CASSULO – DISTRICT MANAGER CHIQUITA CANYON LANDFILL

Enclosures

SEMIANNUAL GROUNDWATER MONITORING REPORT

FIRST AND SECOND QUARTER 2025 (January 1 through June 30, 2025)

CHIQUITA CANYON LANDFILL

COMPLIANCE FILE NO. CI-6231

CASTAIC, CALIFORNIA

FOR

CHIQUITA CANYON LANDFILL

PREPARED BY

SEMIANNUAL GROUNDWATER MONITORING REPORT FIRST AND SECOND QUARTERS 2025

CHIQUITA CANYON LANDFILL

This report was prepared consistent with current and generally accepted environmental consulting principles and practices that are within the limits described herein.

CHANG No. 547 CERTIFIED HYDRO Chang Environmental

Paul D. Chang, C. Hg. Environmental Geologist

TABLE OF CONTENTS

	TABLE OF CONTENTS	
CE	TIFICATION	
1.0	INTRODUCTION	1 2
2.0	MONITORING ACTIVITIES 2.1 Groundwater Monitoring Network 2.2 Description of Monitoring Activities 2.3 Field Procedure for Monitoring Activities	4 4
3.0	ABORATORY RESULTS 3.1 Summary of Results 3.2 DMP/EMP Groundwater Quality Analysis 3.3 CAP Groundwater Quality Analysis 3.4 Demonstration of CAP Effectiveness	7 8
4.0	OTHER SITE MONITORING PROGRAMS	9
5.0	STANDARD OBSERVATIONS	10
6.0	WASTE DISPOSAL REPORTING	11
7.0	MANAGEMENT OF LIQUIDS AND SPECIAL WASTE	12
8.0	LIMITATIONS	13
9.0	REFERENCES	14
	TABLES TABLE 1 DETECTED VOCS TABLE 2 SUMMARY OF STATISTICAL ANALYSIS FIGURES	
	FIGURE 1 - GROUNDWATER ELEVATION CONTOUR MAP – 1ST QUARTIFIGURE 2 - GROUNDWATER ELEVATION CONTOUR MAP – 2ND QUART	
12.0	APPENDICES APPENDIX A – SAMPLING PROCEDURES AND FIELD DATA SHEETS APPENDIX B – GROUNDWATER ELEVATIONS APPENDIX C – PREDICTION LIMIT PLOTS APPENDIX D – LABORATORY ANALYTICAL REPORTS APPENDIX E – EMP/CAP TIME-SERIES PLOTS APPENDIX F – LANDFILL GAS MONITORING REPORTS APPENDIX G – STORMWATER SAMPLE RESULTS	

2025-1 CCL Report

APPENDIX I – STANDARD OBSERVATIONS APPENDIX I – WASTE DISPOSAL REPORT APPENDIX J - WASTE ACCEPTANCE REPORT On behalf of Chiquita Canyon, LLC (CCL), Chang Environmental has prepared this Semiannual Groundwater Monitoring Report for the Chiquita Canyon Landfill. This report includes the First and Second Quarters 2025 Detection Monitoring Program (DMP), Evaluation Monitoring Program (EMP), and Corrective Action Program (CAP) Groundwater Monitoring Report for the reporting period of January through June 2025. The primary purpose of this report is to provide groundwater quality data collected pursuant to Waste Discharge Requirements (WDRs) Order No. R4-2018-0172, issued by the California Regional Water Quality Control Board – Los Angeles Region (RWQCB). This report also includes the Waste Acceptance Report for the Fourth Quarter of 2024 and First Quarter of 2025, as described in CCL's Waste Acceptance Plan (EnviroSolve Corporation, 2011), which was submitted to meet the requirements of RWQCB Order No. R4-2011-0052.

1.1 Summary of Non-Compliance and Corrective Actions

Pursuant to Section B.1.b of the Monitoring and Reporting Program (No, CI-6231), CCL is required to provide details of the compliance record and corrective actions taken or planned during the reporting period. CCL did not receive any orders or notices of violation from the RWQCB during the January 1 through June 30, 2025 reporting period. However, the following corrective actions were taken during the current reporting period in response to prior orders or notices of violation:

- Pursuant to the June 27, 2024 Notice of Violation issued by the RWQCB, CCL finalized
 an access agreement with adjacent property owner, Five Points, and installed the offsite
 groundwater well FP-01 in April 2025. Since the issuance of the NOV, CCL submitted a
 well installation report for the offsite well in May 2025 and has included the new well in
 the quarterly monitoring of groundwater wells.
- Pursuant to the June 27, 2024 Notice of Violation, CCL was required to provide (1) a quarterly report on the integrity of the bottom liner and leachate collection and removal system (LCRS) within the reaction area; (2) specific requirements relating to temperature data and leachate generation/removal rates as part of the LCRS integrity assessment; and (3) monitoring data for all discharges into and out of the south detention basin for dates on which there were alleged storm events. Since the issuance of this NOV, CCL has submitted Quarterly Groundwater and Quarterly Liner and LCRS Integrity Reports, beginning with the July 15, 2024 report through the most recent submission on July 15, 2025. In addition, CCL has been submitting 30-day reports to the RWQCB following storm events that have resulted in a discharge into or out of the south detention basin.
- Pursuant to the April 9, 2024 Notice of Violation issued by the RWQCB, CCL was required to discontinue the practice of using flocculants, a floating inlet/skimmer, and pump to manage stormwater within the south detention basin. Since the issuance of this NOV, the RWQCB has approved CCL's request to resume pumping stormwater from the south sedimentation based during the rainy season as a best management practice to manage stormwater within the basin. RWQCB has also approved CCL's use of anionic

polyacrylamide flocculant at the facility in strategic locations to enhance the settling of solids that are suspended in site stormwater runoff. The flocculant is applied in accordance with the Passive Treatment Plan (PTP) that was submitted to the RWQCB along with the updated Stormwater Pollution Prevention Plan (SWPPP) in February 2025.

1.2 Site Conditions

The Chiquita Canyon Landfill is a Class III solid waste disposal facility owned and operated by CCL. The landfill is in the Santa Clara River basin, approximately three miles west of Castaic Junction in Los Angeles County, California. The landfill includes three disposal areas designated as Primary Canyon, Canyon B, and Main Canyon. Effective January 1, 2025, the landfill closed active waste disposal operations and is no longer accepting waste.

The site is located at the eastern end of the Ventura Basin within the Transverse Ranges geomorphic province. Sedimentary rock units at and near the site are the Pliocene age Pico Formation and the Plio-Pleistocene age Saugus Formation. The marine sediments of the Pico Formation outcrop in the northwest portion of the site. The Saugus Formation overlies the Pico Formation at the site, and Saugus Formation units extend south and east to the Castaic-Newhall area. The Saugus Formation is composed of interbedded shallow-water marine, brackish water, and nonmarine units. Other geologic materials exposed nearby include terrace deposits of Pleistocene age and Holocene alluvium mantling the valley floor. Groundwater beneath the landfill occurs in the sedimentary bedrock (Pico and Saugus formations) and generally flows southward into the Santa Clara River Valley.

Climate at the site is that of semiarid climate typical of the Transverse Ranges. The entire site is well above the 100-year floodplain based on the Federal Emergency Management Agency Flood Insurance Rate Map (FEMA) for Los Angeles County, California. The 100-year, 24-hour rainfall amount was calculated to be 6.51 inches (Golder, 2017). The site lies in a canyon east of San Martinez Chiquito Canyon and south of Hasley Canyon, and is separated from both by relatively steep ridgelines. The ridgelines define the northern and western boundaries of the site, resulting in minimal contributory drainage areas to the landfill. Surface water runoff within the site's drainage basin is directed to the south and east. Most of the site drains south toward the Santa Clara River, which runs along the southern border of the site. The northeast portion of the site drains eastward into a large unnamed canyon, then southeast into Castaic Creek, approximately 3,000 feet from the site boundary.

1.3 Groundwater Flow Direction and Velocity

Determinations of groundwater flow direction and velocity are based on groundwater elevations measured each quarter. The groundwater elevations, interpreted groundwater elevation contours, and the groundwater flow directions are shown for each quarter in Figures 1 (First Quarter) and 2 (Second Quarter). At each well monitored, groundwater elevations were similar in both quarters, so the groundwater elevation contour maps show similar gradients and flow directions for the periods monitored.

Within the Main Canyon area, groundwater flow in the Pico Formation is south, away from the steep topographic ridge to the north. Based on water elevation contours in Figures 1 and 2, a hydraulic gradient of 0.05 feet per feet (ft/ft) was estimated for groundwater in Pico Formation bedrock along the upgradient (north) perimeter of the Main Canyon.

Across the central and southern portion of the site, including all downgradient portions of the waste management units, the uppermost groundwater occurs in the Saugus Formation. Groundwater flow is generally south beneath the Primary Canyon and the Main Canyon, with the exception of flow variations in the vicinity of well DW-17, where higher groundwater elevations indicate a radial flow pattern away from this area. Groundwater beneath Canyon B appears to flow eastward down the canyon. Water level in well PZ-4 is higher than prior to 2019, likely due to the groundwater recharge from the stormwater basin in the area.

Based on water elevations measured both quarters, a range of hydraulic gradients was calculated for the uppermost water-bearing zone in the Saugus Formation. Groundwater gradients are variable, with the steepest gradients in the vicinity of well DW-17, where the local hydraulic gradient is 0.08 ft/ft southwest towards well DW-16. Across the Primary Canyon and downgradient from the Main Canyon, the estimated hydraulic gradient is 0.04 to 0.07 ft/ft.

A range of hydraulic conductivity values has been measured in the Saugus Formation at the site (EMCON, 1990; RTF&A, 2005c). The best estimate of in-situ hydraulic conductivity is based on slug test results, and ranges from 1.1 x 10⁻³ centimeters per second (cm/sec) to 1.1 x 10⁻⁵ cm/sec. Laboratory results of Saugus Formation samples from the site showed porosity values range from 0.25 to 0.38 (EMCON, 1990). Assuming 75 percent of the pore spaces are interconnected and contributing to effective porosity, the estimated effective porosity is 0.19 to 0.28. Using the range of aquifer properties described above and a hydraulic gradient of approximately 0.05 ft/ft for the POC at the Primary Canyon and the Main Canyon, the calculated linear flow velocity for the Saugus Formation varies from approximately 2.0 to 300 feet per year.

2.1 Groundwater Monitoring Well Network

The groundwater monitoring network consists of 17 monitoring wells (DW-1, DW-3, DW 7, DW-8, DW-9, DW-12, DW-14, DW-15, DW-16, DW-17, DW-18, DW-21, DW-28, DW-29, DW-30, DW-31 and PZ-4). Additional points DW 23, DW-24, DW-26, PZ 3, PZ-5, PZ-6, PZ-7, GP-15, GP-16, GP-17, GP 21, GP-22, GP-24, GP-25, and GP-26 are sounded for water levels only. Monitoring points DW-8, DW-25, DW-27, DW-28, PZ-5, PZ-6, GP-25, and GP-26 are completed within the Pico Formation, and the remaining wells and piezometers are monitoring the Saugus Formation.

In accordance with the Investigative Order R4-2024-0010, Chiquita placed five existing groundwater monitoring wells (DW-9, 15, 16, 17, and 29) and any new monitoring wells installed downgradient of the reaction area into an evaluation monitoring program (EMP). Sampling and reporting program for this EMP began in April 2024. Two new onsite monitoring wells (DW-30 and DW-31) were installed in September 2024 by Geo-Logic Associates (GLA) pursuant to Investigative Order Item 1(b). One offsite monitoring well (FP-01) was installed in April 2025 by GLA. A well installation report for DW-30, DW- 31, and FP-01 was prepared by GLA and submitted in May 2025. No surface monitoring network is present at the site.

2.2 Description of Monitoring Activities

Sampling and analytical requirements include quarterly and semiannual groundwater monitoring for monitoring parameters specified in the MRP. Additional monitoring for COCs is annually, at five-year intervals, for background sampling for new constituents when new wells are installed, or when "triggered" by the release discovery response process. The latest five-year COC scan was conducted in April 2016 (R. T. Frankian & Associates (RTF&A), 2016b). The COC sampling is currently conducted annually in accordance with the MRP. CCL has complied with Section C (Required Water Quality Monitoring and Inspection Program) of this MRP.

A CAP is in progress at wells DW-1 near Primary Canyon, and DW-3 at Canyon B. Previous CAP well DW-20 was destroyed and replaced with detection well DW-29. Volatile organic compounds (VOCs) have been historically reported in groundwater samples from these wells. Implemented corrective action measures at these disposal areas include landfill gas (LFG) collection and control system improvements aimed at reducing subsurface gas migration to groundwater.

Quarterly monitoring and semiannual reporting are required by the MRP, which contains the requirements for groundwater sampling and analysis, and evaluation of analytical results. The WDR Order No. R4-2018-0173 adopted on December 13, 2018 included the revised MRP No. CI-6231 which changed the reporting periods as follows:

Period	Sampling Month	Reporting
Semiannual First Second	January & April July & October	July 31 January 31
Annual Summary		
January 1 – December 31		January 31

The Investigative Order R4-2024-0010 placed five existing groundwater monitoring wells (DW-9, 15, 16, 17, and 29) and new monitoring wells (DW-30, 31, and FP-01) installed downgradient of the reaction area into the EMP. Quarterly monitoring began in April 2024, and the most recent quarterly report was submitted on July 15, 2025.

2.3 Field Procedures for Monitoring Activities

The quarterly groundwater monitoring consisted of the following:

- measuring groundwater levels in all wells;
- collecting quarterly groundwater samples from the EMP/CAP wells DW-1, DW-3, and DW-16
- collecting quarterly groundwater samples from the EMP wells DW-9, DW-15, DW-16, DW-17, DW-29, and new wells DW-30, DW-31, and FP-01 in response to the reaction area monitoring
- collecting semiannual groundwater samples from the background monitoring wells DW-8, DW-14, DW-17, and DW-28
- collecting semiannual groundwater samples from the DMP wells DW-7, DW-12, DW-15, DW-18, DW-21, DW-29, and PZ-4; and,
- analyzing these groundwater samples for the site monitoring parameters.

Static water levels in all monitoring network wells were measured using an electric water level sounder prior to purging and sampling. Quarterly water level measurements were collected in January and April. The measurements were recorded on well gauging forms (Appendix A), and the historical calculated elevations are tabulated in Appendix B.

The first quarter groundwater samples for this reporting period were collected in January 2025, and the second quarter samples were collected in April 2025. In addition, at CCL's discretion, samples were collected from all existing wells in the groundwater monitoring program monthly from January through June 2025. Because of a pump malfunction, a February 2025 sample could not be collected from well DW-9. The pump was repaired and sample was collected in March 2025. Groundwater sample was collected from well FP-01 in June 2025 by GLA as described in

the Quarterly EMP Sampling and Evaluation report dated July 15, 2025. The low-flow groundwater sampling field data sheets are provided in Appendix A. Field parameters that were monitored and recorded during low-flow purging consist of specific conductance, pH, temperature, dissolved oxygen (DO), and oxygen reduction potential (ORP).

Water samples were kept on ice in coolers and transported to Enthalpy Analytics, a State-certified laboratory, for analysis. The groundwater samples were analyzed for the selected parameters specified in the MRP. As required by MRP No. 6231, analytical results reported as "less than..." (or "nondetect") are reported as less than a numeric value. Both PQLs and MDLs are reported for each analyte tested.

Annual leachate sample was collected in September 2024, results of which were reported in the 2024 Annual Summary Report. The next annual leachate sampling is scheduled for September 2025.

3.1 Summary of Results.

The intent of the groundwater monitoring program is to assess groundwater quality and determine whether it is being affected by the landfill. This quarterly assessment of monitoring parameters is made through both nonstatistical and statistical analyses, as described in the WDRs.

The concentration limit analysis for the nonstatistical organic (VOC/SVOC) is a comparison of each detected organic compound with its respective MDL and PQL. Detected organic compounds in samples for this monitoring period from January through June are tabulated in Table 1.

The concentration limit analysis of the indicator monitoring parameters for the DMP is the statistical intrawell prediction limit method. This intrawell approach involves using the historical water chemistry for each well as the background data for that well, rather than comparing current water chemistry to data from a different, hydraulically upgradient well. The intrawell background data pool for each well/monitoring parameter was updated prior to the April 2025 monitoring period. The next intrawell background update will be prior to April 2027 monitoring period. The statistical results are summarized in Table 2 and prediction limit plots for each well/indicator monitoring parameter pair are included in Appendix C. The laboratory analytical reports for this reporting period are included in Appendix D. The electronic laboratory analytical results were uploaded to the State GeoTracker website in the required electronic deliverable format (EDF).

3.2 DMP/EMP Groundwater Quality Analysis

The detected organic compound results are summarized in Table 1. Most organic compounds were not detected from the DMP monitoring wells during the current reporting period. VOCs detected includes:

- a trace concentration detection of Freon 12 in the monthly samples from well PZ-4, except for March, which was not detected.
- a trace concentration detection of 1,4-dichlorobenzene in the monthly sample from well DW-15
- a trace concentration detection of tetrachloroethene in the monthly sample from well DW-30
- a trace concentration detection of 1,2-dichloroethane in the January and February samples from well DW-31. Subsequent monthly samples from March through June were non-detects.

Because only trace concentrations of a single VOC – below the PQL – were detected in these wells, CCL concluded that these results does not indicate a measurably significant change in the nature or extent of the release (Monitoring and Reporting Program Section (C)(2)(i)(i)(B)).

During the May 2025 sampling event, well DW-14 detected two VOCs in trace values, both of which are not required to be monitored according to the MRP, but are included in the testing and reporting as part of the lab's standard VOC test list. These trace detections may have been a result of sample contamination during the sampling or analysis process. No VOCs were detected in the groundwater sample collected from this well during the subsequent June sampling. Therefore, no further action is required. Relatively low concentrations of semi-volatile organic compound

(SVOC) 1,4-dioxane were detected in the monthly samples from wells DW-31 and in the June sample from well FP-01.

In general, the analytical results for indicator monitoring parameters and supplemental monitoring parameters are within historical ranges at the site. The statistical analytical results for each monitoring parameter/well pair are presented in Appendix C, and the statistical summary is provided on Table 2. For the monitoring parameters evaluated statistically, total alkalinity in well DW-3, chemical oxygen demand (COD) in well DW-16, and total dissolved solids (TDS) in well DW-17 exceeded their respective statistical prediction limit. These well/monitoring parameter pairs are being monitored in Tracking Mode, and therefore, no further action is required.

The landfill release identified at well DW-16 was initially indicated by the presence of trace concentrations of VOCs (TCE and PCE). Trace to low concentrations of various VOCs were present in the January to June 2025 DW-16 samples (Table 1). The proposed EMP evaluation method is to plot VOC concentrations versus time (time-series plots) and evaluate trends (Appendix E). The recent VOC concentrations in samples from DW-16 have remained relatively consistent at low levels of 1.5 μ g/L or less. For the monitoring parameters evaluated statistically, only COD exceeded the prediction limits, which is already being monitored in tracking mode.

3.3 CAP Groundwater Quality Analysis

As specified in the CAP, the COCs at wells DW-1 and DW-3 are those VOCs identified using USEPA Method 8260, and their concentration limits are the respective MDLs. At well DW-1, the lab reported a trace detection of 1,1-Dichloroethane and PCE in the January to June 2025 samples. A trace concentration of Freon 12 was also detected in the June 2025 sample. At well DW-3, trace to low detections of 1,1-Dichloroethane, Freon 12, PCE, and Trichlorofluoromethane were reported. These results are similar to previous sampling results from these CAP wells.

3.4 Demonstration of CAP Effectiveness

Time-series plots of VOCs detected this reporting period illustrate trends in VOC concentrations through time at well DW-1 and DW-3 (Appendix E). Samples with analyte concentrations less than the MDL ("nondetected") were plotted at one-half the MDL. The VOC concentrations in the DW-1 and DW-3 samples are within historical ranges.

Corrective action measures are continuing to be implemented at the landfill. Corrective action measures at both the Primary Canyon and Canyon B disposal areas include LFG collection and control system improvements aimed at reducing gas migration to groundwater. The LFG collection system appears to be effective at reducing VOC concentrations in groundwater at wells DW-1 and DW-3, so no further changes to the CAP are recommended at this time.

4.0 OTHER SITE MONITORING PROGRAMS

During the reporting period, approximately 5,067,174 gallons of water were used for irrigation, site operation construction, and dust control on the roadways as well as other areas of the Landfill with a high potential for fugitive dust. Sampling and analysis of the water used on site for dust control and other purposes is required by the MRP if the water is not considered potable. Quarterly site water samples (JS-1) were collected in January and April 2025, results of which are included in Appendix D.

Quarterly landfill gas monitoring reports are required by the WDRs in order to comply with the vadose-zone monitoring requirements. Landfill gas monitoring reports for the current reporting period are included as Appendix F.

During the current reporting period, qualifying storm event (QSE) discharge samples were collected from the "South" sampling point on March 14, 2025 (Appendix G). In response to the stormwater sampling requirements contained in the Investigative Order R4-2024-0010, additional samples were collected from the two basin inlets (East Inlet and West Inlet) and the "South" basin on January 26, February 5, February 12, February 28, March 5, March 7, March 11, and April 26, 2025. Laboratory reports for these sampling events are included in Appendix G.

The WDR Order No. R4-2011-0052 specified benchmark values were exceeded by the QSE discharge samples for chemical oxygen demand and total iron (Table G-1). These results were previously determined to be not related to stormwater coming in contact with contaminated soil or related waste (RTF&A, 2017). Based on these results, there was no requirement for corrective measures. Stormwater monitoring reports consistent with the site's Industrial General Permit requirements are reported electronically in SMARTS.

The WDR Order No. R4-2018-0173 requires semiannual reporting of standard observations in accordance with the NPDES Stormwater Permit requirements. The standard observation forms for the current reporting period is included as Appendix H.

The site Waste Disposal Report including monthly waste disposal quantities, remaining capacity estimate, and report of all unacceptable wastes are included as Appendix I. All accepted wastes were deposited in compliance with the RWQCB requirements and no wastes were deposited outside of the boundaries of the waste management area. The landfill is closed effective January 1, 2025, and is no longer accepting waste.

7.0 MANAGEMENT OF LIQUIDS AND SPECIAL WASTE

Semiannual reporting of the managements of leachate and condensate are required and is included as part of the Waste Disposal Report (Appendix I).

As required by RWQCB Order No. R4-2011-0052, CCL submitted a Waste Acceptance Plan (Plan) to the RWQCB for review (EnviroSolve Corporation, 2011). The Waste Acceptance Report under the Plan is attached in Appendix J.

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, expressed or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

- EMCON, 1990, "Geologic/Hydrogeologic Report, Chiquita Canyon Landfill Expansion, Los Angeles County, California," for Laidlaw Waste Systems, dated May 1990.
- EMCON, 1997, "Joint Technical Document, Chiquita Canyon Landfill, Los Angeles County, California," for Laidlaw Waste Systems, dated September 1997.
- EnviroSolve Corporation, 2011, "Waste Acceptance Plan, Chiquita Canyon Landfill, Los Angeles County, California," for Chiquita Canyon Landfill, dated April 29, 2011.
- Frankian, R. T., & Associates, 2004, "Well DW-16 Retest Results," for Chiquita Canyon Landfill, dated December 14, 2004, Job No. 2004-001-90.
- Frankian, R. T., & Associates, 2005a, "Amended Joint Technical Document (Appendix E-6) Proposed Evaluation Monitoring Program for Primary Canyon, Chiquita Canyon Landfill, File No. CI-6231, Valencia California," for California Regional Water Quality Control Board, Los Angeles Region, dated March 9, 2005, Job No. 2004-001-90.
- Frankian, R. T., & Associates, 2005b, "Engineering Feasibility Study for Primary Canyon, Chiquita Canyon Landfill, Compliance File No. CI-6231, Los Angeles County California," for Chiquita Canyon Landfill, dated June 7, 2005, Job No. 2004-001-91.
- Frankian, R. T., & Associates, 2005c, "Well Installation and Aquifer Testing Report," for Chiquita Canyon Landfill, dated August 26, 2005, Job No. 2002-036-91.
- Frankian, R., T., & Associates, 2016a, "Evaluation Monitoring Program Assessment Report for Canyon D Landfill, Compliance File No. CI-6231," for Chiquita Canyon Landfill, dated October 14, 2016, Job No. 2002-036-005.
- Frankian, R. T., & Associates, 2016b, "Annual Groundwater Monitoring Report, Chiquita Canyon Landfill, Compliance File No. CI-6231, Castaic, California" for Chiquita Canyon Landfill, dated February 28, 2017, Job No. 2004-001-090.
- Frankian, R. T., & Associates, 2017, "Semi-annual Groundwater Monitoring Report, First and Second Quarters 2017, Chiquita Canyon Landfill, Compliance File No. CI-6231, Castaic, California" for Chiquita Canyon Landfill, dated June 28, 2017, Job No. 2004-001-090.
- Geo_Logic Associates, 2025, "Groundwater Monitoring Well Installation Report, Chiquita Canyon Landfill, Castaic, California," for Chiquita Canyon Landfill, dated May 2025, Project No. RM22.1077.00.
- Golder Associates, Inc., 2017, "Joint Technical Document, Chiquita Canyon Landfill, 29201 Henry Mayo Drive, Castaic, CA, 91384," for Chiquita Canyon Landfill, dated December, 2017, Project No. 093-97453.
- SWT Engineering, Inc., 2024, "Stormwater Pollution Prevention Plan for the Chiquita Canyon Landfill" for Chiquita Canyon Landfill, dated July 2024.

TABLE 1 DETECTED VOCS TABLE 2 SUMMARY OF STATISTICAL ANALYSIS

TABLE 1

DETECTED ORGANIC COMPOUNDS CHIQUITA CANYON LANDFILL JANUARY 2025

Well ID	Sample Date	Compound	Concentration (ug/L)
DMP			
PZ-4	1/14/25	Freon 12	0.3 J
EMP			
DW-15	1/15/25	1,4-Dichlorobenzene	0.2 J
DW-16	1/16/25	1,1-Dichloroethane	1.2 J
DW-16	1/16/25	1,4-Dichlorobenzene	0.3 J
DW-16	1/16/25	Benzene	0.2 J
DW-16	1/16/25	Chloroform	0.2 J
DW-16	1/16/25	cis-1,2-Dichloroethene	0.7 J
DW-16	1/16/25	Tetrachloroethene	0.8 J
DW-16	1/16/25	Trichloroethene	0.7 J
DW-30	1/15/25	Tetrachloroethene	0.3 J
DW-31	1/16/25	1,2-Dichloroethane	0.2 J
DW-31	1/16/25	1,4-Dioxane	4.2
CAP			
DW-1	1/16/25	1,1-Dichloroethane	0.2 J
DW-1	1/16/25	Tetrachloroethene	0.3 J
DW-3	1/16/25	1,1-Dichloroethane	0.3 J
DW-3	1/16/25	Freon 12	5.2
DW-3	1/16/25	Tetrachloroethene	1.1 J
BLANKS			
Field Blank	1/13/25	Chloroform	0.5 J
Field Blank	1/14/25	Chloroform	0.2 J
Field Blank	1/15/25	Chloroform	0.5 J
Field Blank	1/16/25	Chloroform	0.5 J
Trip Blank	1/13/25	Chloroform	0.5 J
Trip Blank	1/14/25	Chloroform	0.2 J
Trip Blank	1/15/25	Chloroform	0.5 J
Trip Blank	1/16/25	Chloroform	0.5 J

^{* =} also detected in trip blank

TABLE 1

DETECTED ORGANIC COMPOUNDS CHIQUITA CANYON LANDFILL FEBRUARY 2025

Well ID	Sample Date	Compound	Concentration (ug/L)
DMP			
PZ-4	2/11/25	Freon 12	0.4 J
EMP			
DW-15	2/10/25	1,4-Dichlorobenzene	0.2 J
DW-16	2/19/25	1,1-Dichloroethane	1.5 J
DW-16	2/19/25	1,4-Dichlorobenzene	0.2 J
DW-16	2/19/25	Benzene	0.2 J
DW-16	2/19/25	Chloroform	0.7 J
DW-16	2/19/25	cis-1,2-Dichloroethene	0.9 J
DW-16	2/19/25	Tetrachloroethene	0.6 J
DW-16	2/19/25	Trichloroethene	0.7 J
DW-30	2/10/25	Tetrachloroethene	0.5 J
DW-31	2/18/25	1,2-Dichloroethane	0.3 J
DW-31	2/18/25	1,4-Dioxane	3.9
CAP			
DW-1	2/19/25	Tetrachloroethene	0.2 J
DW-3	2/19/25	1,1-Dichloroethane	0.3 J
DW-3	2/19/25	Freon 12	6.0
DW-3	2/19/25	Tetrachloroethene	0.8 J
BLANKS			
Field Blank	2/10/25	Chloroform	0.6 J
Field Blank	2/11/25	Chloroform	0.5 J
Field Blank	2/18/25	Chloroform	0.5 J
Field Blank	2/19/25	Chloroform	0.6 J
Trip Blank	2/10/25	Chloroform	0.6 J
Trip Blank	2/11/25	Chloroform	0.5 J
Trip Blank	2/18/25	Chloroform	0.6 J
Trip Blank	2/19/25	Chloroform	0.7 J

^{* =} also detected in trip blank

TABLE 1

DETECTED ORGANIC COMPOUNDS CHIQUITA CANYON LANDFILL MARCH 2025

Well ID	Sample Date	Compound	Concentration (ug/L)
DMP			
		None	
EMP			
DW-15	3/12/25	1,4-Dichlorobenzene	0.3 J
DW-16	3/20/25	1,1-Dichloroethane	1.1 J
DW-16	3/20/25	1,4-Dichlorobenzene	0.3 J
DW-16	3/20/25	Benzene	0.2 J
DW-16	3/20/25	Chloroform	0.3 J
DW-16	3/20/25	cis-1,2-Dichloroethene	0.7 J
DW-16	3/20/25	Freon 12	0.3 J
DW-16	3/20/25	Tetrachloroethene	0.6 J
DW-16	3/20/25	Trichloroethene	0.7 J
DW-16	3/20/25	Trichlorofluoromethane	0.09 J
DW-30	3/12/25	Tetrachloroethene	0.5 J
DW-31	3/12/25	1,4-Dioxane	3.3
CAP			
DW-1	3/12/25	1,1-Dichloroethane	0.2 J
DW-1	3/12/25	Tetrachloroethene	0.3 J
DW-3	3/20/25	1,1-Dichloroethane	0.3 J
DW-3	3/20/25	Freon 12	4.4 J
DW-3	3/20/25	Tetrachloroethene	0.8 J
DW-3	3/20/25	Trichlorofluoromethane	0.1 J
BLANKS			
Field Blank	3/10/25	Chloroform	0.6 J
Field Blank	3/11/25	Chloroform	0.6 J
Field Blank	3/12/25	Chloroform	0.6 J
Field Blank	3/20/25	Chloroform	0.5 J
Trip Blank	3/10/25	Chloroform	0.6 J
Trip Blank	3/11/25	Chloroform	0.6 J
Trip Blank	3/12/25	Chloroform	0.5 J
Trip Blank	3/20/25	Chloroform	0.5 J

^{* =} also detected in trip blank

B = contamination found in associated method blank

TABLE 1

DETECTED ORGANIC COMPOUNDS CHIQUITA CANYON LANDFILL APRIL 2025

Well ID	Sample Date	Compound	Concentration (ug/L)
DMP			
PZ-4	4/23/25	Freon 12	0.4 J
EMP			
DW-15	4/24/25	1,4-Dichlorobenzene	0.2 J
DW-16	4/28/25	1,1-Dichloroethane	0.9 J
DW-16	4/28/25	1,4-Dichlorobenzene	0.3 J
DW-16	4/28/25	Benzene	0.2 J
DW-16	4/28/25	Chloroform	0.3 J
DW-16	4/28/25	cis-1,2-Dichloroethene	0.6 J
DW-16	4/28/25	Tetrachloroethene	0.6 J
DW-16	4/28/25	Trichloroethene	0.7 J
DW-16	4/28/25	Trichlorofluoromethane	0.09 J
DW-30	4/24/25	Tetrachloroethene	0.4 J
DW-31	4/28/25	1,4-Dioxane	6.0
CAP			
DW-1	4/28/25	Tetrachloroethene	0.2 J
DW-3	4/28/25	1,1-Dichloroethane	0.2 J
DW-3	4/28/25	Freon 12	3.5 J
DW-3	4/28/25	Tetrachloroethene	0.9 J
DW-3	4/28/25	Trichlorofluoromethane	0.1 J
BLANKS			
Field Blank	4/22/25	Chloroform	0.8 J
Field Blank	4/22/25	Methylene Chloride	6.5
Field Blank	4/23/25	Chloroform	0.8 J
Field Blank	4/23/25	Methylene Chloride	7.1
Field Blank	4/24/25	Chloroform	0.7 J
Field Blank	4/24/25	Methylene Chloride	5.9
Field Blank	4/28/25	Chloroform	0.7 J
Field Blank	4/28/25	Methylene Chloride	6.4
Trip Blank	4/22/25	Chloroform	0.5 J
Trip Blank	4/23/25	Chloroform	0.5 J
Trip Blank	4/24/25	Chloroform	0.5 J
Trip Blank	4/28/25	Chloroform	0.5 J

TABLE 1

DETECTED ORGANIC COMPOUNDS CHIQUITA CANYON LANDFILL MAY 2025

Well ID	Sample Date	Compound	Concentration (ug/L)
DMP			
PZ-4	5/14/25	Freon 12	0.7 J
DW-14	5/14/25	Naphthalene	0.9 J
DW-14	5/14/25	Propylbenzene	0.1 J
EMP			
DW-15	5/14/25	1,4-Dichlorobenzene	0.2 J
DW-16	5/15/25	1,1-Dichloroethane	1.2 J
DW-16	5/15/25	1,4-Dichlorobenzene	0.3 J
DW-16	5/15/25	Benzene	0.2 J
DW-16	5/15/25	Chloroform	0.2 J
DW-16	5/15/25	cis-1,2-Dichloroethene	0.9 J
DW-16	5/15/25	Tetrachloroethene	0.7 J
DW-16	5/15/25	Trichloroethene	0.7 J
DW-16	5/15/25	Trichlorofluoromethane	0.1 J
DW-16	5/15/25	Vinyl Chloride	0.2 J
DW-30	5/15/25	Tetrachloroethene	0.5 J
DW-31	5/12/25	1,4-Dioxane	6.5
CAP			
DW-1	5/15/25	1,1-Dichloroethane	0.1 J
DW-1	5/15/25	Tetrachloroethene	0.2 J
DW-3	5/15/25	1,1-Dichloroethane	0.3 J
DW-3	5/15/25	Freon 12	4.1 J
DW-3	5/15/25	Tetrachloroethene	0.8 J
DW-3	5/15/25	Trichlorofluoromethane	0.1 J
BLANKS			
Field Blank	5/12/25	Chloroform	0.7 J
Field Blank	5/12/25	Methylene Chloride	2.5 J
Field Blank	5/13/25	Chloroform	0.7 J
Field Blank	5/13/25	Methylene Chloride	2.9 J
Field Blank	5/14/25	Chloroform	0.6 J
Field Blank	5/15/25	Chloroform	0.9 J
Field Blank	5/15/25	Methylene Chloride	11
Trip Blank	5/12/25	Chloroform	0.6 J
Trip Blank	5/13/25	Chloroform	0.5 J
Trip Blank	5/14/25	Chloroform	0.5 J
Trip Blank	5/15/25	Chloroform	0.6 J

TABLE 1

DETECTED ORGANIC COMPOUNDS CHIQUITA CANYON LANDFILL JUNE 2025

Well ID	Sample Date	Compound	Concentration (ug/L)		
DMP					
PZ-4	6/11/25	Freon 12	1.1 J		
EMP					
DW-15	6/11/25	1,4-Dichlorobenzene	0.2 J		
DW-16	6/12/25	1,1-Dichloroethane	1.2 J		
DW-16	6/12/25	1,4-Dichlorobenzene	0.2 J		
DW-16	6/12/25	Benzene	0.2 J		
DW-16	6/12/25	Chloroform	0.1 J		
DW-16	6/12/25	cis-1,2-Dichloroethene	0.7 J		
DW-16	6/12/25	Freon 12	0.4 J		
DW-16	6/12/25	Tetrachloroethene	0.6 J		
DW-16	6/12/25	Trichloroethene	0.7 J		
DW-16	6/12/25	Trichlorofluoromethane	0.1 J		
DW-30	6/11/25	Tetrachloroethene	0.6 J		
DW-31	6/9/25	1,4-Dioxane	10		
FP-01	6/19/25	1,4-Dioxane	6.2		
CAP	5, 10, 20	.,			
DW-1	6/12/25	1,1-Dichloroethane	0.2 J		
DW-1	6/12/25	Freon 12	0.4 J		
DW-1	6/12/25	Tetrachloroethene	0.2 J		
DW-3	6/12/25	1,1-Dichloroethane	0.2 J		
DW-3	6/12/25	Freon 12	4.1 J		
DW-3			0.8 J		
DW-3 6/12/25		Trichlorofluoromethane	0.1 J		
BLANKS	5, 1 = 1				
Equipment Blank	6/19/25	Chloroform	0.6 J		
Equipment Blank	6/19/25	Methylene Chloride	3.4 J		
Field Blank	6/9/25	Chloroform	0.7 J		
Field Blank	6/9/25	Methylene Chloride	7.4		
Field Blank	6/10/25	Chloroform	0.8 J		
Field Blank	6/10/25	Methylene Chloride	7.7		
Field Blank	6/11/25	Chloroform	0.8 J		
Field Blank	6/11/25	Methylene Chloride	7.0		
Field Blank	6/12/25	Chloroform	0.7 J		
Field Blank	6/12/25	Methylene Chloride	6.7		
Field Blank	6/19/25	Chloroform	0.7 J		
Field Blank	6/19/25	Methylene Chloride	3.9 J		
Trip Blank	6/9/25	Chloroform	0.9 J		
Trip Blank	6/9/25	Methylene Chloride	7.3		
Trip Blank	6/10/25	Chloroform	0.8 J		
Trip Blank	6/10/25	Methylene Chloride	6.9		

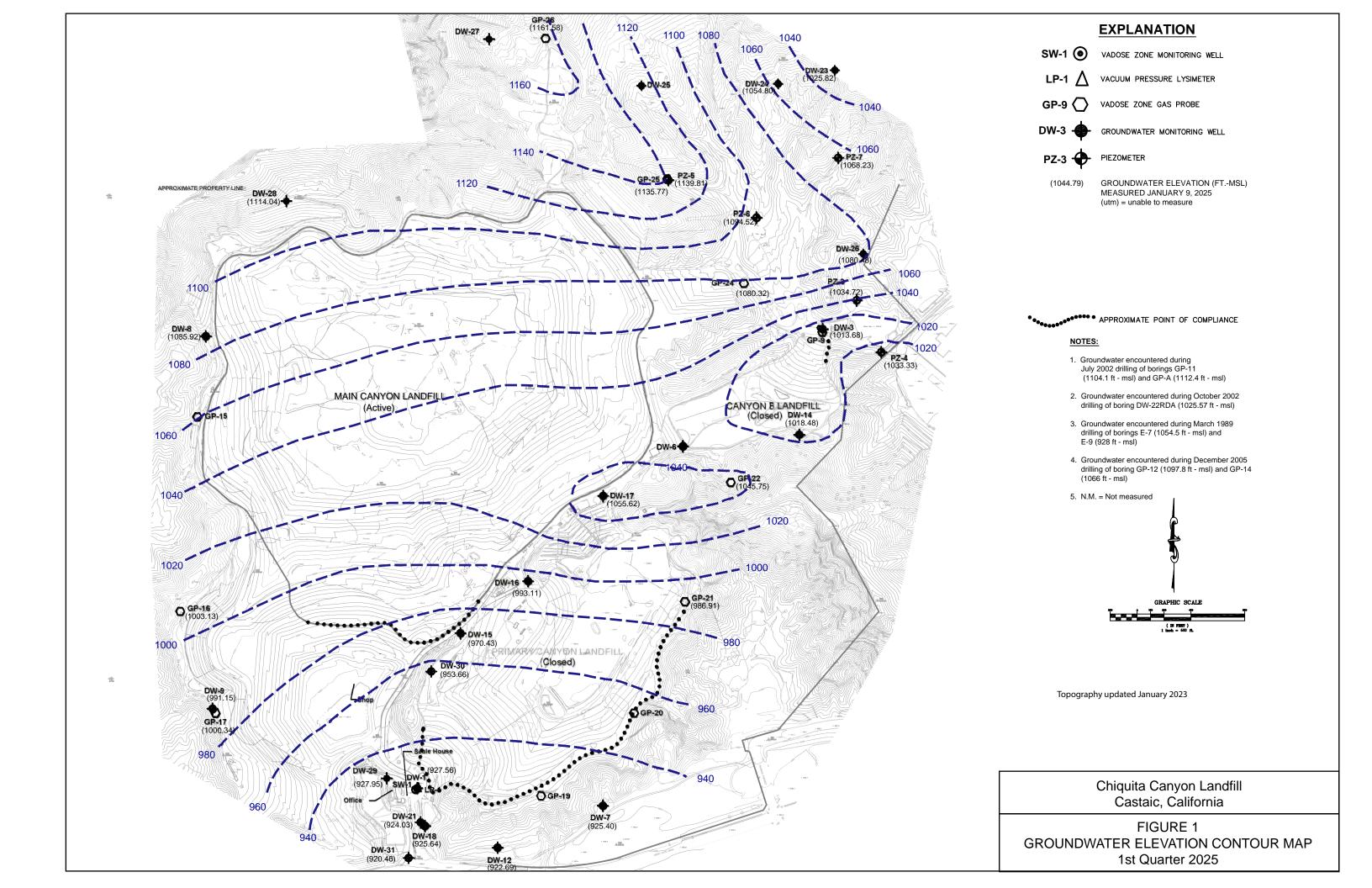
TABLE 1

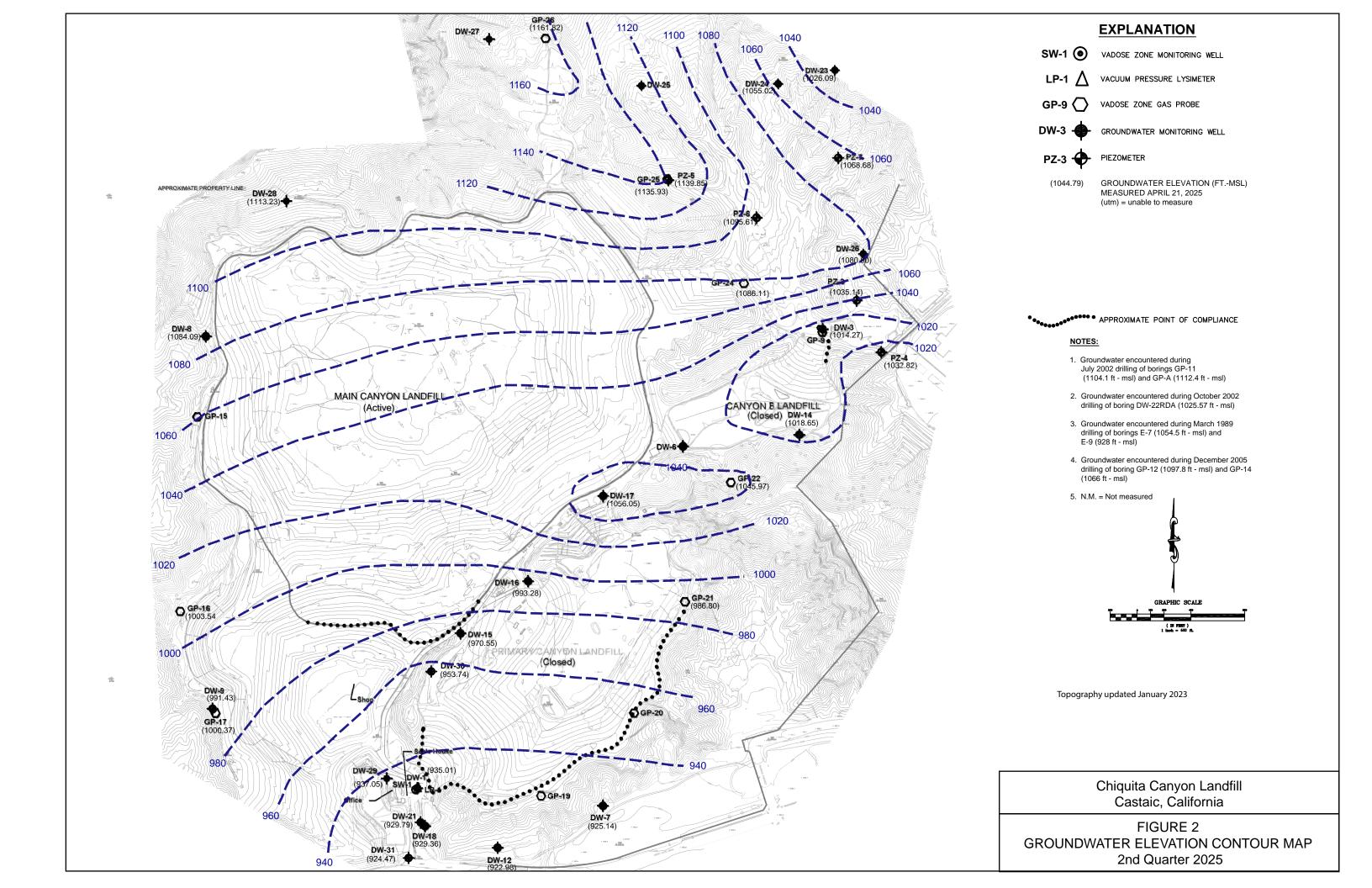
DETECTED ORGANIC COMPOUNDS CHIQUITA CANYON LANDFILL JUNE 2025

Well ID Sample Date		Compound	Concentration (ug/L)
Trip Blank	6/11/25	Chloroform	0.5 J
Trip Blank	6/12/25	Chloroform	0.5 J
Trip Blank	6/19/25	Chloroform	0.5 J

TABLE 3

SUMMARY OF STATISTICAL ANALYSIS
Chiquita Canyon Landfill, Valencia, California


	First Semiannual 2025									
Groundwater			Chemical Oxygen						Total Dissolved	Total Organic
Monitoring	Alkalinity	Ammonia	Demand		Nitrate as	Potassium,	Sodium,		Solids	Carbon
Point	as CaCO3	as N	(COD)	Chloride	N	Total	Total	Sulfate	(TDS)	(TOC)
DW-1	W	W	W	W	W	W	W	W	W	W
DW-3	E	W	W	W	W	W	W	W	W	W
DW-7	W	W	W	W	W	W	W	W	W	W
DW-8	W	W	W	W	W	W	W	W	W	W
DW-12	W	W	W	W	W	W	W	W	W	W
DW-14	W	W	W	W	W	W	W	W	W	W
DW-15	W	W	W	W	W	W	W	W	W	W
DW-16	W	W	E	W	W	W	W	W	W	W
DW-17	W	W	W	W	W	W	W	W	E	W
DW-18	W	W	W	W	W	W	W	W	W	W
DW-21	W	W	W	W	W	W	W	W	W	W
DW-28	W	W	W	W	W	W	W	W	W	W
DW-29	W	W	W	W	W	W	W	W	W	W
DW-30	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
DW-31	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
PZ-4	W	W	W	W	W	W	W	W	W	W


Statistical analysis performed using all values past 5 years as background and values for the current sampling period as compliance value.

Notes:

Shaded cells are well/parameter pairs monitored in tracking mode Prediction Limit Results: W = Within limit, E = Exceeds limit. n/a = Not analyzed due to insufficient number of data.

FIGURE 1 - GROUNDWATER ELEVATION CONTOUR MAP – 1ST QUARTER 2025 FIGURE 2 - GROUNDWATER ELEVATION CONTOUR MAP – 2ND QUARTER 2025

