
UCLA
UCLA Electronic Theses and Dissertations

Title
Charge-trap transistors for neurmorphic computing

Permalink
https://escholarship.org/uc/item/9mn4r930

Author
Gu, Xuefeng

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9mn4r930
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Charge-Trap Transistors for Neuromorphic Computing

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Electrical and Computer Engineering

by

Xuefeng Gu

2018

© Copyright by

Xuefeng Gu

2018

 ii

ABSTRACT OF THE DISSERTATION

Charge-Trap Transistors for Neuromorphic Computing

by

Xuefeng Gu

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2018

Professor Subramanian Srikantes Iyer, Chair

As the demand for energy-efficient cognitive computing keeps increasing, the conventional

von Neumann architecture becomes power/energy prohibitive. Brain-inspired, or neuromorphic

computing has been extensively investigated in the past three decades because of its distributed

memory/processors and massive connectivity, which promise low-power operation. One critical

device in such a system is the synapse – a local memory which stores the connectivity between

neurons. Many devices, such as resistive memory, phase-change memory, ferroelectric field-

effect-transistor, and flash memory, have been suggested as candidates for analog synapses. In this

work, the use of a CMOS-only and manufacturing-ready candidate – the charge-trap transistor

(CTT), is investigated.

The analog programming characteristics of CTTs most pertinent to neuromorphic applications

will first be investigated. In particular, the analog retention, the fine-tuning of individual CTTs,

the spike-timing dependent plasticity, the weight-dependent plasticity, and the device variation

 iii

will be discussed. The implications learned from this part serve as the basic understanding for

subsequent chapters using CTTs for neuromorphic applications.

Next, two algorithms for unsupervised learning, namely, winner-takes-all (WTA) clustering

and temporal correlation detection, are investigated, using CTTs as the analog synapses. For each

algorithm, the feasibility of hardware implementation using CTTs as the analog synapses is first

studied and system performance evaluated using experimentally measured CTT characteristics.

Experimental demonstration is then presented using custom-built CTT arrays in the 22 nm fully

depleted silicon-on-insulator (SOI) technology.

Finally, the use of CTTs for analog synapses in an inference engine is considered. The fine-

tuning of CTT weights in an array setting is first examined as it is anticipated to be different from

that of discrete devices because of the half-selection and thermal disturbance by adjacent cells.

The achieved standard deviation of the difference between the target and the actually programmed

weight is as low as 6% of the dynamic range. The programmed CTT array is then used as a dot

product engine, the key to an inference engine. Implications of the imperfect array programming

in the accuracy of an inference engine are then discussed.

 iv

This dissertation of Xuefeng Gu is approved.

Jason C. S. Woo

Sudhakar Pamarti

Achuta Kadambi

Janakiraman Viraraghavan

Subramanian Srikantes Iyer, Committee Chair

University of California, Los Angeles

2018

 v

To my wife Peiyun and daughter Xi-Mu

 vi

Table of Contents

ABSTRACT OF THE DISSERTATION ... ii

Acknowledgements .. viii

List of Figures ... x

List of Tables ... xviii

VITA .. xix

1. Introduction ... 1

1.1 Background of neuromorphic computing ... 1

1.2 Overview of existing efforts in neuromorphic computing ... 4

1.3 Existing analog synapses .. 7

1.4 CTT basics .. 10

1.5 Value propositions of CTT: Motivation ... 12

1.6 Dissertation organization .. 13

2. Characterization of CTT for Analog Synapses .. 15

2.1 Use of CTTs as Analog Synapses ... 15

2.2 Device characteristics in 22nm fully depleted SOI .. 17

2.2.1 Programming and erase behavior .. 18

2.2.2 Tunability offered by the N-well ... 20

2.2.3 Analog retention and fine-tuning .. 21

2.3 Spike-timing dependent plasticity (STDP) ... 25

2.4 Weight-dependent plasticity ... 30

2.5 Variation of CTT .. 32

3. CTTs in Unsupervised Learning ... 35

3.1 Winner-takes-all network ... 35

3.1.1 Background ... 35

 vii

3.1.2 Simulation results with CTT characteristics ... 37

3.1.3 Experimental demonstration .. 43

3.2 Temporal correlation detection ... 48

3.2.1 Background ... 48

3.2.2 Simulation results with CTT characteristics ... 51

3.2.3 Experimental demonstration .. 60

4. CTTs in An Inference Engine .. 64

4.1 Implementation of fully connected neural networks using CTTs .. 64

4.2 Fine-tuning of CTT weights ... 67

4.3 Dot product engine using a CTT array ... 72

4.4 Consideration of imperfections: effect of weight variation .. 75

4.5 Comparison with other analog memory devices .. 79

5. Conclusions and Future Prospects .. 82

5.1 Conclusions ... 82

5.2 Future prospects .. 83

References .. 85

 viii

Acknowledgements

I would first like to thank my advisor and lifetime mentor, Prof. Subramanian Iyer, for his

tremendous support and guidance. This work would not have been possible without his gracious

help over the years. I am grateful to the numerous discussions we had regarding research, work,

and life. I am so fortunate to have this extraordinary teacher instill in me the strong work ethic, the

freedom of thinking, and a way of life.

I also greatly appreciate the help and encouragement I received from my committee members,

Prof. Jason Woo, Prof. Sudhakar Pamarti, Prof. Achuta Kadambi, and Prof. Janakiraman

Viraraghavan. In particular, the countless discussions I had with Prof. Pamarti and Prof.

Viraraghavan during the tapeout are tremendously helpful.

I have been lucky to have worked with collaborators from the industry. Their perspectives have

benefited me a lot. In particular, I would like to thank Toshiaki Kirihata, Dan Berger, Norm Robson,

Navneet Jain, Juhan Kim, Maciej Wiatr, and Laks Vanamurthy from GlobalFoundries, and John

Barth from Invecas.

At UCLA, I enjoyed great company from all my CHIPS friends. I received a lot of help from

my colleagues in the smaller NeuroCTT team: Zhe Wan, Steven Moran, Premsagar Kittur, Faraz

Khan, and Jonathan Cox. Also thanks to those we have helped me one way or the other: Adeel

Bajwa, Boris Vaisband, Amir Hanna, Siva Jangam, Arsalan Alam, Meng-Hsiang Liu, among many

others. We are lucky to have Kyle Jung in CHIPS, who meticulously takes care of everything we

need in many aspects.

I would like to thank Deeona Columbia for her great patience when helping me, and Ryo

Arreola for his effort in the administrative procedures. I would also like to thank Minji Zhu for his

technical support in some of the experiments.

In the seven months that I spent in IBM East Fishkill, I had the opportunity to work with and

learn from many wonderful colleagues: Jang Sim, Yongchun Xin, Cheng-Yi Lin, Yang Yang,

 ix

Xiang Chen, Qintao Zhang, Geng Wang, Ravikumar Ramachandran, Sami Rosenblatt, among

many others. I would also like to thank Tom Koscal from GlobalFounrdies for his help in setting

up the characterization platform in the early stage of this project.

On the personal side, I enjoy great friendship with so many: Dingkun Ren, Li Du, Yuan Du,

Yubo Wang, Ti-Wen Lin, Luyao Xu, Rui Zhu, among many others.

In the end, I would like to thank my family. My parents Xianghe and Ling supported me

selflessly when I needed it the most. My wife Peiyun has always been by my side at our toughest

times, for which I am forever grateful. We have accomplished this together. To my beloved

daughter Xi-Mu, your coming to this world is the best gift I have ever received, and I cherish every

single moment with you. For a while, it was your smile that kept me going.

 x

List of Figures

Figure 1.1 Various parasitic elements in a 3D trigate transistor with epitaxial source/drain.

Adapted from [1].

Figure 1.2 Exponential increase in power as a function of data rate. Node b is smaller than node

a. Also shown are the linear power limits of static logic circuits. Adapted from [2].

Figure 1.3 (a) The schematic of the interconnect within a 3D-WSI system. Adapted from [3]. (b)

Si-dielets bonded onto a Si-IF with 100 μm inter-dielet distance. Adapted from [4].

Figure 1.4 Illustration of the neuron structure and the synapse between neurons.

Figure 1.5 Interest in neuromorphic or brain-inspired computing in the past three decades. Web

of Science search criteria: Neuromorphic Computing OR Brain-inspired Computing.

Figure 1.6 (a) The typical switching characteristics of a bipolar TiN/HfOx/AlOx/Pt memristor cell

showing binary memristance states. (b) Different memristance states can be obtained by using

different set compliance current. Adapted from [36].

Figure 1.7 Operating mechanism of a phase change memory [37].

Figure 1.8 Single-pulse transfer characteristics measured after different gate stress conditions.

Adapted from [56].

Figure 1.9 High-k charge-trapping phenomenon with a drain bias. (a) PVRS measurement for

different drain biases. (b) Higher drain biases during programming not only increases DVT, but

also improves retention. Adapted from [57].

Figure 2.1 Transfer characteristics of a CTT before and after programming, and also after erase.

ΔVT of 250 mV and a corresponding subthreshold current change of 1000× can be achieved.

Figure 2.2 Illustration of the use of subthreshold current as the synaptic weight and the pulsing

schemes to reduce or increase the weight.

 xi

Figure 2.3 Structure of the super-low-VT CTT under characterization.

Figure 2.4 Typical ID-VG curves for unprogrammed (blue), programmed (red), and erased (yellow)

CTT. Dashed curves are measured with source and drain flipped. W/L=170nm/20nm.

Figure 2.5 ID-VG curves of CTT at multiple intermediate states.

Figure 2.6 Subthreshold swing of CTT as the device is programmed.

Figure 2.7 Effect of NW on device VT. (a) ID-VG curves for different NW biases. (b) ΔVT as a

function of VNW.

Figure 2.8 Effect of NW bias during programming. ~13% ΔVT improvement can be achieved with

a 0.5 V NW bias.

Figure 2.9 Analog retention characteristic for two memristors. (a) TiN/HfOx/AlOx/Pt cell [36]. (b)

WOx cell [63].

Figure 2.10 Analog retention characteristic of CTT. The CTT is programmed by 315 50-µs gate

pulses with the voltage increasing from 1 V to 2.57 V in 5 mV increment. The drain current is

measured at VG = 200 mV and VD = 50 mV for one hour after each 15-pulse segment. The zoom-

in of three circles is shown in Fig. 2.11.

Figure 2.11 The current recovery for 1 hour after programming for different current levels. (a) the

1st, (b) the 11th, and (c) the 21st segment in Fig. 2.10, corresponding the different colors.

Figure 2.12 The relationship between the current increase in 1 hour and the current immediately

after programming.

Figure 2.13 (a) The programmed current (after 1 hour) vs. the target current, with over-

programming of the CTT according to Eq. (2.1). (b) The standard deviation of the current measured

in the last minute of 1 hour vs. the target current. It can be seen that the current is very stable after

1 hour.

Figure 2.14 Typical spike-timing dependent plasticity exhibited by synapses [64].

 xii

Figure 2.15 Pulsing scheme to demonstrate STDP in CTT. (a) The connection: the pre-synaptic

signal is connected to the source of the CTT, the post-synaptic signal is connected to the gate of

the CTT, and the drain is biased at a constant voltage. (b) The pulsing scheme: The voltage first

drops to 0 from V1 for a period of t1, returns to Vp and then gradually decays to V1 again.

Figure 2.16 Detailed breakdown of the applied pre- and post-synaptic pulses when (a) the post-

synaptic neuron fires before the pre-synaptic one (Δt = tpre − tpost > 0), and (b) the post-synaptic

neuron fires after the pre-synaptic one (Δt < 0).

Figure 2.17 Boxplot of the STDP behavior when Vp = 2.3 V.

Figure 2.18 Spike-timing dependent plasticity exhibited by CTT. Solid lines are exponential

curves fitted to Eq. (2.2).

Figure 2.19 Configurations of the CTT in the (a) LTD and (b) LTP regimes. (c) Reversible and

reproducible device conductance change through four cycles.

Figure 2.20 (a) The weight-dependent plasticity when five trapping/detrapping pulses are applied

in the LTD/LTP regimes, respectively. (b) Fitted curves when pulses of different widths are

applied.

Figure 2.21 The evolution of average (a) VT and (b) Iinf with the number of programming pulses,

for different gate programming voltage. Each programming pulse is 500-µs long and the total

programming time is 30 ms.

Figure 2.22 Statistics of (a) VT and (b) Iinf with the number of programming pulses, for different

gate programming voltage. Each programming pulse is 500-µs long and the total programming

time is 30 ms.

Figure 3.1 Results of a simple 4´2 WTA clustering network implemented by memristors and

software [66]. (a) The structure of the WTA network. Four input neurons correspond to the four

bits in a pattern, and two output neurons correspond to two clusters. (b) Evolution of the

 xiii

“specialization” function which indicates the quality of the clustering. (c) The evolution of

membrane potentials as the network is trained. (d) Evolution of the synaptic weights. (e) and (f)

Clustering results before (e) and after (f) training. “d” indicates a one-bit-flipped version of the

pattern.

Figure 3.2 Device structure and LTP/LTD characteristics exhibited by a TFT-like NOR flash cell

[67]. (a) Schematic of the device structure and the connection of pre- and post-synaptic signals

that cause a weight update. (b) LTP/LTD characteristics.

Figure 3.3 (a) The patterns to be clustered: stylized letters z, v, n and noisy versions of them.

Reproduced from [68]. (b) The 9´3 WTA network. Output neurons of different colors correspond

to different categories. Adapted from [65].

Figure 3.4 Flow chart for WTA network training.

Figure 3.5 Fire counts from three output neurons (a) before and (b) after training. Blue, red, yellow:

output neurons 1, 2, and 3. “” denotes a noisy version. (c) The evolution of the output neuron

specializations as the network is trained. Adapted from [65].

Figure 3.6 An example of the evolution of synaptic weights G1,1 (blue) and G2,1 (red) for different

programming times: (a) Two pulses are applied for LTD/LTP, and (b) Five pulses are applied for

LTD/ LTP. Adapted from [65].

Figure 3.7 (a) Experimentally measured and (b) Empirically determined relative conductance

change as a function of the conductance itself in the LTP and LTD regimes. The algorithm

converges with the variation shown in Fig. (b). Adapted from [65].

Figure 3.8 The standalone CTT array and two rows of 25×1 scribe line monitor (SLM) pads used

to directly access all terminals of each CTT individually.

 xiv

Figure 3.9 Use of the standalone array for demonstration of the WTA network. Three columns are

selected corresponding to three neurons of different colors. Also shown is the pulse configuration

when a CTT (Row 2, Colum 1) is programmed.

Figure 3.10 Clustering results of the three trial runs.

Figure 3.11 (a) The evolution of the synaptic weights. (b) Detailed look at the weight evolution

of two CTTs circled by green in Fig. (a).

Figure 3.12 Schematic illustration of the temporal correlation detection problem.

Figure 3.13 Flow chart of a simplified k-means clustering algorithm. The process is usually

repeated multiple times to find an optimal solution.

Figure 3.14 Mean and standard deviation of the PCM used in [70] when the SET current is 100

µA.

Figure 3.15 Amplitude- and pulse-number-dependent programming behavior exhibited by PCM

used in [70]. Each point on the curves is an average from 10,000 devices.

Figure 3.16 CTT conductance as a function of the number of programming pulses. Black dots:

experiment; blue curve: empirically fitted curve. Here, the pulse is fixed at 20 µs, VG = 2.6 V, and

VD = 1.2 V.

Figure 3.17 A black-and-white image used for the demonstration of temporal correlation detection

with CTT. Black pixels correspond to correlated processes while white pixels correspond to

uncorrelated ones.

Figure 3.18 Temporal correlation detection achieved by CTT after 1,000 time instances when c =

0.05. (a) The separation of CTT inference currents between correlated and uncorrelated processes.

(b) The reconstructed image when a threshold inference current of 80.5 nA is used by the classifier.

Figure 3.19 Precision-recall curve of the detector in Fig. 3.18(a).

 xv

Figure 3.20 (a) Precision-recall curves for different correlation coefficients: 0.1 (red), 0.05 (blue),

0.02 (yellow), and 0.01 (purple). (b) The histogram of inference currents for correlated and

uncorrelated processes when c = 0.02. The inset shows the reconstructed image at a recall of 0.9.

Figure 3.21 Area under the curve (AUC) of the precision-recall curves in Fig. 3.20(a) as a function

of the correlation coefficient. The dashed line is the performance of a random classifier.

Figure 3.22 The evolution of the reconstructed image (at recall = 0.9) at different time instances

k = 200, 400, 600, 800, and 1,000. Improving fidelity can be observed.

Figure 3.23 (a) The precision-recall curves at different time instances k = 200, 400, 600, 800, and

1,000. (b) AUC of the curves in Fig. (a). The dashed line is the performance of a random classifier.

Here, p = 0.1 and c = 0.05.

Figure 3.24 An example of the detection of two correlated groups and an uncorrelated one. The

correlation coefficient for the two correlated groups are 0.8 and 0.4, respectively. It is clear that

the inference currents corresponding to the CTTs belonging to the three groups are well separated.

Figure 3.25 Statistics of the precision-recall curves for different correlation coefficients c = 0.1,

0.05, 0.02, and 0.01. Solid lines are average for 1,000 runs and the error bars indicate the standard

deviation.

Figure 3.26 The configuration for the demonstration of temporal correlation detection using the

standalone array. Each CTT corresponds to a binary random process. The correlated processes are

indicated by black pixels in Fig. (b).

Figure 3.27 (a) The distribution of current ratio after 400 time instances when c = 0.8.

(b) The reconstructed pattern using R = 0.3 as the threshold.

Figure 3.28 The evolution of the current ratio R = Ipost/Ipre for the correlated and uncorrelated

groups.

Figure 3.29 The precision-recall curves after 400 time instances, for c = 0.8, 0.5, and 0.2.

 xvi

Figure 4.1 A fully connected neural network.

Figure 4.2 Illustration of the hardware implementation of a fully connected neural network using

the amplitude of drain voltage as inputs.

Figure 4.3 Illustration of the hardware implementation of a fully connected neural network using

the pulse width as inputs.

Figure 4.4 (a) The rectifying linear unit (ReLU) as the activation function. (b) Schematic

illustration of the simple implementation of ReLU.

Figure 4.5 The initial weights (at VGS = 200 mV and VDS = 50 mV bias) of an as-fabricated twin-

CTT array.

Figure 4.6 The programmed twin-CTT cell current vs. the target current, right after 22

programming-tuning cycles (blue) and 14 hours later.

Figure 4.7 The histogram of the difference between the programmed current and target current,

right after fine-tuning and 14 hours later.

Figure 4.8 The programmed vs. target current, (a) 14 hours after fine-tuning, and (b) after applying

8 extra programming pulses after the 14 hours.

Figure 4.9 The programmed vs. target current with CTT over-programming, (a) right after fine-

tuning, (b) 6 hours after fine-tuning, and (c) 18 hours after fine-tuning.

Figure 4.10 The configuration to measure column currents. VG = 200 mV is applied when input

is 1 and VG = −300 mV when the input is 0.

Figure 4.11 The relationship between the measured weighted summation of inputs (current) and

the ideal one.

Figure 4.12 The relationship between the measured weighted summation of inputs (current) and

the calculated one (using individual CTT currents). (a) Immediately after fine-tuning, (b) 6 hours

later, and (c) 18 hours later.

 xvii

Figure 4.13 The relationship between the classification accuracy and the number of discrete

weight levels.

Figure 4.14 The degradation of MNIST classification accuracy as the variation in weights

increases.

Figure 4.15 The structure of the GoogLeNet with the last fully connected layer highlighted [73].

Figure 4.16 The degradation of the Top 5 and Top 1 accuracy as the variation in the weights

increases.

 xviii

List of Tables

Table 1.1 A summary of important parameters of some existing neuromorphic systems. Adapted

from [18].

Table 1.2 Examples of material systems used for resistive and phase-change memory. Adapted

with modification from [44].

Table 1.3 A summary of prototype CTT-based multi-time programmable memory (MTPM).

Adapted from [60].

Table 2.1 Parameters from the fitted Equation (2.2).

Table 4.1 Summary of the fine-tuning (with CTT over-programming) statistics of 30 twin-CTT

cells.

Table 4.2 Summary of the programming accuracy of the CTT, eFlash, and memristor.

Table 4.3 Summary of the energy efficiency of the CTTs and other analog memory devices.

 xix

VITA

September 2007 - June 2011 Bachelor of Engineering, Southeast University

September 2011 - March 2013 Master of Science, University of California, Los Angeles

May 2016 - December 2016 IBM Systems, Hopewell Junction, NY

March 2013 - December 2018 Ph.D., University of California, Los Angeles

.

 1

1. Introduction

1.1 Background of neuromorphic computing

Over the past four decades, the size of transistors has been scaled by over three orders of

magnitude. This is mainly fueled by the need to reduce cost. Interestingly, the scaling of transistors

has also been the driving force of the ever-increasing system performance and functionality.

However, as the transistor size has been pushed close to the manufacturing limit (production of 7

nm technology has begun by TSMC and Samsung as of the writing of this dissertation), several

key challenges present themselves. First, from the device perspective, the parasitic capacitance

and resistance has increased dramatically due to the ever-shrinking feature size (Fig. 1.1). In fact,

some argue that the parasitic elements might be the most critical challenge for sub-10-nm nodes

[1]. Second, from the system perspective, because the number of interconnects between chips has

not scaled as much (only 3−4 times), the data-fetching between chips (say, between the CPU and

the memory) using high-speed serializer-deserializer (SerDes) consumes a significant portion of

the power budget and occupies a large area (Fig. 1.2). Finally, the increasing non-recurring

engineering (NRE) cost has also made scaling devices alone a less attractive solution.

Figure 1.1 Various parasitic elements in a 3D trigate transistor with epitaxial
source/drain. (a) Capacitance, (b) Resistance. Adapted from [1].

 2

An architecture change has long been considered necessary to keep improving the system

performance without further shrinking the transistors. For example, three-dimensional (3D) wafer-

scale integration (3D-WSI) and silicon interconnect fabric (Si-IF) targeting heterogeneous

integration are being actively pursued (Fig. 1.3) [2−4]. While these approaches address the

interconnect issue to some degree, the fundamental problem – the need for high-speed

communication between different components of a system, remains.

Despite all these efforts, the state-of-the-art systems, using CPU and/or GPU, can barely

compete with humans in many cognitive tasks, not to mention the tremendously more space and

Figure 1.2 Exponential increase in power as a function of data rate. Node b is smaller
than node a. Also shown are the linear power limits of static logic circuits. Adapted from
[2].

Figure 1.3 (a) The schematic of the interconnect within a 3D-WSI system. Adapted from [3].
(b) Si-dielets bonded onto a Si-IF with 100 μm inter-dielet distance. Adapted from [4].

 3

power required by those systems. In this regard, the human brain is a remarkable cognitive device.

While occupying a volume of only two liters and consumes merely 20 W, it performs many tasks

such as image recognition and speech processing amazingly well.

Compared to the conventional von Neumann computing architecture, the main features of the

human brain are its distributed memory and processor, and massive connectivity between them. In

a human brain, there are ~ 1011 neurons (the processor) and ~ 1014 synapses (the connection

between neurons which stores the connectivity). As shown in Fig. 1.4, each neuron receives input

signals from its dendrites and sends an output signal through its axon. Between the axon of a

neuron and the dendrite of the next neuron is a structure called synapse which stores the

“connectivity” between the two neurons. When a neuron receives a pre-synaptic signal, its

membrane potential is updated according to the synaptic strength, and when a certain threshold is

reached, the neuron fires – sending a spike to the next neuron – and returns to its rest state.

Unlike most computers which separate the memory from the CPU and constantly ferry data

between the two, the brain stores and processes information locally, and as a result promises

massively parallel processing capability with little power consumption. Therefore, brain-inspired

Figure 1.4 Illustration of the neuron structure and the synapse between neurons. Adapted from
[42].

 4

neuromorphic computing systems are considered a strong candidate to complement conventional

von-Neumann computers in many cognitive tasks [5-10].

1.2 Overview of existing efforts in neuromorphic computing

The concept of neuromorphic computing can be dated back to the 1950s and gained momentum

in the 1980s when a group of researchers in Caltech began looking into the possibility of building

electronic circuits to mimic how various parts of the body work [11-13]. Since then, efforts have

focused on building hardware inspired by the human brain, including, but not limited to, the

Neurogrid [14], the HRL SyNAPSE [15], the SpiNNaker [16, 17], and the IBM TrueNorth [9].

Table 1.1 summarizes some of the key aspects of these systems and a more comprehensive survey

can be found in [18].

These systems can be categorized based on their purposes: to simulate a large-scale

neuromorphic system (ultimately at the scale of the human brain), or to solve cognitive problems

more efficiently with brain-inspired architecture. The first category, which Neurogrid and

SpiNNaker belong to, aims at building a platform for neuroscientists to perform biological real-

Table 1.1 A summary of important parameters of some existing neuromorphic systems. Adapted
from [18].

System # of neurons # synapses/neuron
Synapse

implementation

Learning

rule
Power

Neurogrid 1,048,576 6×109 total SRAM None 2.7 W

SpiNNaker 1,000 1,000 SRAM Any 1 W

SyNAPSE 576 128 Memristor STDP 130 mW

TrueNorth 1,048,576 256 SRAM None 63 mW

 5

time simulations with much less power compared to conventional computers, understand how the

brain works, and potentially build intelligent machines. For example, Neurogrid uses a few watts

to simulate a million neurons in real time whereas a personal computer uses a few hundred watts

to simulate 2.5 million neurons 9,000 times slower than real time [14].

What is more relevant to this dissertation is the second category, which tries to solve real-world

cognitive tasks with brain-inspired neural networks. HRL SyNAPSE and IBM TrueNorth belong

to this category. The HRL SyNAPSE adopts the CMOS technology to emulate all neural and

synaptic computations and memristor technology for high-density analog synapse storage [15].

The IBM TrueNorth, on the other hand, exclusively relies on the CMOS technology. Built on

Samsung’s 28-nm technology, and fully capable of running convolutional neural networks, the

chip has 5.4 billion transistors with 4096 neuro-synaptic cores interconnected via an intrachip

network that integrates 1 million programmable spiking neurons and 256 million configurable

synapses. Although the sizes of these systems are not comparable to human brains, it is interesting

to note that they can already perform some cognitive tasks at biological real time and a much lower

power compared to conventional von Neumann architectures. For example, when neurons fire on

average at 20 Hz and have 128 active synapses, the total measured power of TrueNorth was 72

mW, corresponding to 26 pJ per synaptic event (considering total energy). This is 176,000 times

more energy efficient compared with an optimized simulator running the exact same network on

a modern general-purpose microprocessor, and 769 times more energy efficient compared with a

state-of-the-art multiprocessor neuromorphic approach running a similar network [9].

Note that the IBM TrueNorth utilizes ternary synaptic weights (0 and ±1) stored in SRAM.

This has at least two drawbacks. First, due to the coarse precision of synaptic weights, a larger-

scale network is required for competitive accuracy. Second, since it requires six transistors to store

one bit of information in SRAM, the synapses end up occupying ~ 30% area of the chip. These

 6

problems can be addressed by using analog memory for the synapses, as is the case in HRL

SyNAPSE where memristive devices are used.

Indeed, since the publication of “The missing memristor found” in 2008 [19], the interest in

neuromorphic, or brain-inspired computing, has skyrocketed (Fig. 1.5). A lot of research has

focused on the characterization of various analog synaptic devices including resistive memory,

phase-change memory, magnetic memory, ferroelectric FETs, flash memory, etc., and their

applications in neuromorphic computing [20−24]. In the next Section, we will review the

representative device characteristics of some of these analog memory devices, which leads to the

discussion of a new device (in Sections 1.4 and 1.5) that will be studied in this dissertation: the

charge-trap transistors (CTTs).

Figure 1.5 Interest in neuromorphic or brain-inspired computing in the past three decades. Web
of Science search criteria: Neuromorphic Computing OR Brain-inspired Computing.

 7

1.3 Existing analog synapses

A memristor is the fourth fundamental passive circuit element (besides the resistor, the

capacitor, and the inductor) predicted by Leon Chua from symmetry arguments in 1971 [25]. The

behavior of a memristor can be described with two simple equations [19]:

v = R(w,i)i (1.1)

dw/dt = f(w,i) (1.2)

where w is a set of state variables, and f and R are functions of time. Note from Eq. (1.2) that, the

state variable w depends on the history of the current flowing through the device, making the

resistance R also dependent on the current’s history. Although such nonlinear device

characteristics hold great promise to provide very valuable circuit functionalities-for example,

high-density electronic resistance switches-no direct connection was found between the

mathematics and the physical properties of any practical system for almost four decades. This gap

was closed by a group of researchers from HP Labs in 2008 [19]. Using a simple analytical

example, the authors showed that, memristance arises naturally in nanoscale systems in which

solid-state electronic and ionic transport are coupled under an external bias voltage, paving the

path for extensive memristor research in the past decade [26-35].

Fig. 1.6 shows the typical switching characteristics of a bipolar TiN/HfOx/AlOx/Pt memristor

cell. In Fig. 1.6(a), the device first goes through a SET process where the voltage gradually

increases from 0 to 2 V, with a current compliance of 100 µA enforced. The current starts to

increase very rapidly at about 1.6 V, and the device is programmed to a low resistance state. The

device then goes through a RESET process (with a voltage of as high as -3.3 V) to return to its

original state. The compliance current during the SET process can be utilized to control the state

 8

the memristor is programmed to. In Fig. 1.6(b), compliance currents of 1-200 µA are used in

different SET processes, resulting in seven intermediate resistance states.

Phase-change memory (PCM), which exploits the resistance difference between the crystalline

and amorphous phases, is another memristive device [37, 38]. As shown in Fig. 1.7, to RESET the

device, a high enough current is necessary to melt the material and a rapid quenching is required

to keep the material in the amorphous state; to SET the device, a lower current is used for a longer

time to allow time for recrystallization [37].

Although resistive memristors and PCM have the potential to be used for high-density analog

synapses, they have a main drawback: the added material and process complexities (Table 1.2).

Figure 1.6 (a) The typical switching characteristics of a bipolar TiN/HfOx/AlOx/Pt memristor
cell showing binary memristance states. (b) Different memristance states can be obtained by
using different set compliance current. Adapted from [36].

Figure 1.7 Operating mechanism of a phase change memory [37].

 9

This adds a significant cost especially for small-scale memory. Furthermore, the implications of

adding these materials into a conventional CMOS process is yet to be fully understood.

Besides two-terminal memristors, floating-gate transistors have received increasing interest

recently. For example, using a commercial 180-nm NOR flash memory technology, Guo et al.

reported a prototype inference engine which can classify a Modified National Institute of Standards

and Technology (MNIST) handwritten digit in less than 1 µs with an energy consumption of ~ 20

nJ. Both numbers are more than three orders of magnitude better than those of the 28-nm IBM

TrueNorth digital chip for the same task at a similar fidelity [45]. There are also a few startup

companies which are promoting floating-gate transistors for low-power artificial intelligence (AI)

applications [46, 47]. However, the downsides of flash-memory-based analog synapses are also

evident: additional processes are required, and the device are not logic-voltage compatible. For

example, in [45], about 30% of the total active area is occupied by level shifters because of the

high operating voltage.

We have in this Section briefly reviewed a few popular candidates for analog synapses. The

goal is to understand the limitations of these approaches, which are summarized below:

• CMOS process compatibility: new materials and processes are most of the time inevitable,

regardless of the technology.

• CMOS logic-voltage compatibility: high voltage is typically required for the flash memory.

Table 1.2 Examples of material systems used for resistive and phase-change memory. Adapted
with modification from [44].

Synapse Type Material System

Resistive memory

TiOx/HfOx [36]
PCMO [39]

TiOx [40]
WOx [41]

Phase-change
memory

Ge2Sb2Te5 [Kuzum 42]
Si16.4Sb32.5Te51.1 [43]

 10

If a CMOS-compatible (or ideally, CMOS-only) analog memory device exists, and the device

can be programmed with logic-compatible voltages, these problems can all be addressed.

Fortunately, such a device does exist - any logic transistor with a high-k-metal-gate in advanced-

node technologies will suffice. The charge-trapping phenomenon in the high-k gate dielectric can

be exploited for memory applications. The transistors to be used this way are called charge-trap

transistors (CTTs). In the next two Sections, we will first describe the operating mechanism of

CTTs, and then discuss the value propositions of CTTs for analog synapse applications.

1.4 CTT basics

Around 2000s, the relentless device scaling finally led to a very thin gate oxide in transistors,

resulting in unacceptably high gate leakage through SiO2. High-dielectric-constant materials, i.e.

high-k materials, were therefore proposed to provide the transistors with the same ON-current

while not significantly reducing the gate-oxide thickness [48−50]. An undesirable feature of these

high-k dielectrics however, is that there are inherent oxygen vacancies in the material, acting as

the charge-trapping centers. When devices are biased at a high gate voltage for a prolonged time,

these oxygen vacancies will trap electrons in them and gradually increase the threshold voltage

(VT) of the device (Fig. 1.8). In other words, the VT changes with time and is unstable. This effect

is traditionally known as the bias temperature instability (BTI), a nuisance that is to be eliminated

for an ideal process [51−56]. Moreover, because it is a universal feature of high-k gate dielectrics,

virtually all advanced-node technologies beyond 32 nm have this problem.

 11

However, it has recently been demonstrated that, the charge-trapping phenomenon by the

oxygen vacancies in HfO2 gate dielectric, when utilized properly, can be used as a mechanism for

nonvolatile memory applications [57-60]. It is found that, if a drain bias is present when the gate

pulse is being applied, the charge-trapping behavior can be stabilized. Fig. 1.9 shows the VT change

in a pulsed voltage ramp sweep (PVRS) measurement for different drain biases, where 10-ms gate

programming pulses with increasing amplitude are applied [57]. In Fig. 1.9(a), we can observe that

the maximum DVT one can obtain first increases with an increasing VD and then decreases after a

certain VD (~ 1.3 V in this case) because the device is easier to breakdown [61]. Furthermore, Fig.

1.9(b) shows the improved retention at a higher VD during programming. The extrapolated charge

loss after ten years when the device is baked at 65 °C is less than 10% at a programming VD of 1.3

V, whereas it is as much as over 30% at a programming VD of 0.5 V. This behavior is drastically

different from BTI, where the DVT is a few tens of mV and vanishes when the gate bias is removed.

This behavior has been carefully studied and attributed to the high channel temperature during

programming, which significantly reduces the capture/emission times of deep traps. After the

Figure 1.8 Single-pulse transfer characteristics measured after different gate stress conditions.
Adapted from [56].

 12

programming pulses are removed, the device rapidly cools down, leaving those filled deep traps a

long time to de-trap, and hence resulting in a long retention time.

Taking advantage of this self-heating-enhanced charge-trapping behavior in HfO2,

GlobalFoundries has recently commercialized CTTs for digital multi-time programmable memory.

Table 1.3 summarizes some of the products that have been prototyped in different technology

nodes [60]. Note that the CTT technology has been demonstrated in both planar and FinFET nodes,

bulk and SOI substrates alike.

1.5 Value propositions of CTT: Motivation

It should be clear by now that, the CTT is a good candidate and worth exploring for analog

synapses in various neuromorphic computing systems targeting fast and low power cognitive tasks.

Compared to other analog synapse alternatives, CTTs possess the following advantages:

Figure 1.9 High-k charge-trapping phenomenon with a drain bias. (a) PVRS measurement for
different drain biases. (b) Higher drain biases during programming not only increases DVT, but
also improves retention. Adapted from [57].

Table 1.3 A summary of prototype CTT-based multi-time programmable memory (MTPM).
Adapted from [60].

 13

• It is CMOS-only. Unlike resistive/phase-change RAM or flash technology, no extra

materials or processes are necessary. This has an obvious advantage: the development cost

of the technology is very low - any advanced-node logic transistors can be used as CTTs

straight out of the fab, and existing IP designs in an older node can be easily ported to a

new node.

• It is a three-terminal device, providing flexibility in the control of the device and avoiding

the use of access transistors for two-terminal emerging memory devices.

• It only uses logic compatible voltage below 2.5 V. This is a significant advantage especially

compared to flash-based analog synapses.

However, one thing to keep in mind is that the CTT is not a high-density memory device

because a relatively wide device (> ~ 200 nm) is required for efficient charge-trapping to take

place. From the cost perspective, this limits the memory size to a few tens of MBs (see Rows 1-3

in Table 1.3 for examples), which is enough to implement most of the neural networks. Therefore,

it is practical to build very useful hardware using CTT-based analog synapses.

1.6 Dissertation organization

In this Chapter, we have provided a brief overview on the background of neuromorphic

computing, pointed out that there are different types of neuromorphic systems based on their

purposes: to simulate the brain or to perform fast and low power cognitive tasks, and revealed that

analog synapses are essential for the second-type neuromorphic system because of their capability

of enabling in-memory computation and relatively high density compared to SRAM. Various

analog synaptic devices, including resistive and phase-change RAM, as well as flash memory, are

discussed. CTTs are then introduced for their apparent advantages of being CMOS-only and logic-

voltage-compatible. The operating mechanism of CTTs, namely, the charge-trapping phenomenon

 14

enhanced and stabilized by a drain bias during programming, is described. CTT value propositions

and the motivation of this dissertation are discussed.

In Chapter 2, we will discuss the analog programming characteristics of CTTs most pertinent

to neuromorphic applications. In particular, the analog retention, fine-tuning of individual CTTs,

the spike-timing dependent plasticity, and the weight-dependent plasticity are discussed. Variation

of CTTs is also characterized using a custom-built CTT array.

In Chapter 3, two algorithms for unsupervised learning, namely, winner-takes-all (WTA)

clustering and temporal correlation detection, are investigated, using CTTs as the analog synapses.

For each algorithm, the background is first reviewed, and implementations using other analog

synapse alternatives are discussed. The implementation using CTTs as the analog synapses is then

studied and system performance evaluated using experimentally measured CTT characteristics.

Experimental demonstrations of both algorithms are then presented using custom-built CTT arrays.

In Chapter 4, the use of CTTs as analog synapses in an inference engine is studied. We first

consider the configuration of using CTTs for a fully connected neural network. The fine-tuning of

CTT weights in an array setting is studied since it is anticipated to be different from that of discrete,

standalone devices because of the half-selection, thermal disturbance by adjacent cells, etc. The

robustness of the inference engine to weight variations is also discussed. In Section 4.5, the

comparison between CTT and other analog memory devices is discussed.

Finally, the dissertation is concluded with an outlook of the future of CTT-based neuromorphic

systems.

 15

2. Characterization of CTT for Analog Synapses

2.1 Use of CTTs as Analog Synapses

Besides being used as a multi-time-programmable memory where only two states are utilized,

CTTs hold great potential for analog memory as well. This is primarily for two reasons: 1) The

amount of trapped electrons in the high-k gate dielectric can be finely modified by applying lower

and shorter programming pulses (compared to digital applications); and 2) CTT-based synapses

can be operated in the subthreshold region, providing a large dynamic range with a relatively small

change to ΔVT. For example, ΔVT of 250 mV can be readily achieved by applying a 10-ms trapping

pulse with VG = 2.8V and VD = 1.5 V, providing a subthreshold current change of more than 1000×

(Fig. 2.1).

Figure 2.1 Transfer characteristics of a CTT before and after programming, and also after erase.
ΔVT of 250 mV and a corresponding subthreshold current change of 1000× can be achieved.

 16

After being programmed, a CTT can also be erased by a negative gate-to-source and gate-to-

drain voltage (Fig. 2.1), although not completely. This provides an extra degree of controllability

in accurate programming of the device. In addition, this ability to be erased is desired for

applications such as winner-takes-all (WTA) clustering which will be discussed in Chapter 3.

As shown in Fig. 2.2, when a weight is to be decreased, trapping pulses are applied to the gate

of the CTT, increasing its VT and therefore decreasing the weight; when a weight is to be increased,

de-trapping pulses are applied, reducing its VT and therefore increasing the weight.

Using the CTTs this way as an analog synapse finds various applications in neuromorphic

computing. In this Chapter, we will examine the spike-timing dependent plasticity and weight-

dependent plasticity, which are required characteristic for adaptive learning and WTA clustering,

respectively. The application of this configuration for an inference engine will be discussed in

Chapter 4.

Figure 2.2 Illustration of the use of subthreshold current as the synaptic
weight and the pulsing schemes to reduce or increase the weight.

 17

2.2 Device characteristics in 22nm fully depleted SOI

In this Section, CTT behavior is characterized in the 22nm fully depleted silicon-on-insulator

(22FDX) technology. Specifically, super-low-VT transistors (a standard logic device offering) are

characterized. The same device is used later in the experimental demonstration of unsupervised

learning as well as a dot product engine for inference engines.

The device structure is schematically depicted in Fig. 2.3, where the gate-oxide is 1.25-nm-

thick, SOI is 6-nm-thick, and the BOX is 20-nm-thick. One notable feature is the N-well (NW),

which provides an extra degree of tunability of VT. In practice, NW is shared by an array of devices

and is contacted by a via through locally etched BOX.

Caution must be taken when programming pulses are sent from the semiconductor parameter

analyzer to the device. Because the cabling has a capacitance as large as 1 nF, and the wiring

resistance from the pads to the device terminal can be as large as 100 Ω, ultrashort pulses should

be avoided. Here, the shortest pulse is 20-µs long, ensuring a high fidelity of the actual voltage

that is applied to the device terminals.

Figure 2.3 Structure of the super-low-VT CTT under characterization.

 18

2.2.1 Programming and erase behavior

Fig. 2.4 shows the ID-VG curves of a CTT before programming, after programming, and after

erase. During programming, a 10-ms, 2.6 V pulse is applied to the gate with VD = 1.3 V, resulting

in 103 mV VT shift (Δ VT); during erase, a 30-ms, −2.8 V pulse is applied to the gate with both

source and drain grounded. An important feature to note here is that, there is a ~10 mV ΔVT

residual after erase. More negative VG and longer erase time are necessary to reduce the VT further.

Measurements with source/drain reversed (dashed curves) do not show significant differences,

indicating that the charge-trapping is not highly asymmetric along the channel direction.

Fig. 2.5 shows the ID-VG curves of a CTT programmed to intermediate states. These states are

achieved by applying lower and shorter gate voltage during programming. It is worth noting that,

as the device is programmed, the subthreshold swing does not degrade (Fig. 2.6).

Figure 2.4 Typical ID-VG curves for unprogrammed (blue), programmed (red), and erased
(yellow) CTT. Dashed curves are measured with source and drain flipped. W/L=170nm/20nm.

 19

Figure 2.5 ID-VG curves of CTT at multiple intermediate states.

Figure 2.6 Subthreshold swing of CTT as the device is programmed.

 20

2.2.2 Tunability offered by the N-well

As mentioned above, the super-low VT CTT being studied here is a flip-well device, with an

NW underneath the BOX. The device characteristics can be modified by the NW bias (Fig. 2.7)

with a sensitivity of ΔVT/ΔVNW = −88 mV/V. With regards to the application of CTT as an analog

synapse, the NW bias can serve two purposes: 1) During programming, a positive bias reduces the

VT and therefore increases the channel current, improving the programming efficiency without

raising the gate voltage; 2) After programming, NW bias can be used to collectively increase or

decrease the synaptic weight without added complexity in the circuitry. We will focus on the first

point here.

Fig. 2.8 shows the effect of NW bias during programming. It is observed that the VT increases

more with a larger NW bias during programming (up to 12 mV, or 13%), and this improvement

saturates for NW bias larger than 0.5 V.

Figure 2.7 Effect of NW on device VT. (a) ID-VG curves for different NW biases. (b) ΔVT as a
function of VNW.

 21

2.2.3 Analog retention and fine-tuning

CTTs have been qualified as multi-time-programmable digital memory for 10 years at

105−125 °C. The relatively large VT difference (therefore current difference) is sensed by a slew

sense amplifier. In the analog regime, however, the states are ideally continuous, making the

quantification of retention more challenging.

There have been a few reports on the analog retention behavior of other analog memory devices

in the literature. Fig. 2.9 shows two examples of TiN/HfOx/AlOx/Pt and WOx, respectively. In Fig.

2.9(a), the device resistance can vary for more than 100% [36]; in Fig. 2.9(b), the device current

decays significantly within a period of three minutes [63].

Figure 2.8 Effect of NW bias during programming. ~13% ΔVT improvement can be
achieved with a 0.5 V NW bias.

 22

We show in Fig. 2.10 the retention of multiple analog states in CTT. Here, the device is

programmed with a train of 315 50-µs pulses. In these pulses, VG increases from 1 V to 2.57 V in

5 mV increment while VD is held at 1 V. The pulses are applied in 21 segments (each with 15

pulses) and the inference current at VG = 200 mV and VD = 50 mV is measured for one hour after

each segment. Two features can be observed: First, after each segment of programming pulses, the

inference current gradually increases within one hour, apparently due to de-trapping of trapped

electrons; second, not all current increase resemble the shape of an exponential function, indicating

that there is no single time constant.

A detailed look at Fig. 2.10 reveals that, the lower current (or the higher VT) the CTT is

programmed to, the more up-drift there is after programming. For example, when the CTT is

programmed with 21 gate pulses from 1 V to 1.1 V (Fig. 2.11(a)), the current increase in one hour

is only 0.87%; when the current is programmed to 330 nA using 315 gate pulses (Fig. 2.11(c)), the

current increase in one hour is 64 nA, or 19.3%, corresponding to a VT recovery of approximately

7 mV. Although the 7 mV VT recovery is usually not an issue for digital memory applications, it

may be of concern to analog memory since the current is changed significantly.

Figure 2.9 Analog retention characteristic for two memristors. (a) TiN/HfOx/AlOx/Pt cell [36].
(b) WOx cell [63].

 23

Figure 2.10 Analog retention characteristic of CTT. The CTT is programmed by 315 50-µs
gate pulses with the voltage increasing from 1 V to 2.57 V in 5 mV increment. The drain
current is measured at VG = 200 mV and VD = 50 mV for one hour after each 15-pulse segment.
The zoom-in of three circles is shown in Fig. 2.11.

Figure 2.11 The current recovery for 1 hour after programming for different current levels. (a)
the 1st, (b) the 11th, and (c) the 21st segment in Fig. 2.10, corresponding the different colors.

 24

Fig. 2.12 shows the relationship between the current increase in 1 hour and the current

immediately after programming. An approximate linear relationship is fitted to be

ΔI = −0.075×IRA+114.5 (nA) (2.1)

where ΔI is the current increase and IRA is the current immediately after programming.

The implications of such analog retention behavior in accurately programming the analog

memory are two-fold: First, the CTT needs be over-programmed; second, a block write-verify

algorithm needs to be adopted: the CTTs in an array should be programmed one block at a time,

and the verification of the inference current should take place after the block-write to allow for the

stabilization of the current.

Using the fitted behavior in Eq. (2.1), a CTT is programmed to discrete target current levels

from 1.2 µA to 350 nA. For each target current, the device is over-programmed by the amount

predicted by Eq. (2.1) and the current is measured after 1 hour. The relationship between the

programmed current after 1 hour and the target current is shown in Fig. 2.13(a). It is clear that the

Figure 2.12 The relationship between the current increase in 1 hour and the current immediately
after programming.

 25

dots almost lie on the ideal y = x line, indicating a very good programming result. Indeed, the

standard deviation of the difference between the programmed and the target current is less than

1.6% of the range of the target current.

Fig. 2.13(b) shows the standard deviation of the current measured in the last minute of 1 hour

as a function of the target current. The current is stable regardless of the target current. In Section

4.3, the stability of the current after programming will be revisited in the array context.

2.3 Spike-timing dependent plasticity (STDP)

The CTT can be employed to realize plastic synapses that possess spike-timing dependent

plasticity (STDP) (Fig. 2.14) [64]. STDP is a key memory and learning mechanism in biological

synapses: if the pre-synaptic neuron repeatedly fires right before the post-synaptic neuron does,

the connectivity between the two neurons is strengthened (long-term potentiation, LTP); on the

contrary, if the pre-synaptic neuron repeatedly fires right after the post-synaptic neuron does, the

connectivity is weakened (long-term depression, LTD). In other words, the change in the

connectivity between neurons depends on the timing-difference between pre- and post-synaptic

Figure 2.13 (a) The programmed current (after 1 hour) vs. the target current, with over-
programming of the CTT according to Eq. (2.1). (b) The standard deviation of the current
measured in the last minute of 1 hour vs. the target current. It can be seen that the current is very
stable after 1 hour.

 26

neurons. Since the VT change after programming depends on the amplitude of the gate voltage, if

a pulsing scheme can translate the timing difference to the amplitude, it should be able to

demonstrate STDP in CTT. For example, in [36] and [42], discrete pulses are applied to the device

to mimic the STDP characteristic. The idea is that, no pre- or post-synaptic pulse alone can

significantly modify the state of the device, and only when the two pulses are simultaneously

present can the device state be changed.

A similar pulsing scheme depicted in Fig. 2.15(b) is adopted here but the pulses are continuous

instead of a train of discrete pulses in [36] and [42]. This makes circuit design much simpler. With

this scheme, the pre-synaptic signal is connected to the source of the CTT, the post-synaptic signal

is connected to the gate of the CTT, and the drain is biased at a constant voltage (Fig. 2.15(a)).

The pre- and post-synaptic spikes take the same form: The voltage first drops to 0 from V1 for a

period of t1, returns to Vp and then gradually decays to V1 again with a slope of S (V/s).

Fig. 2.16 illustrates in detail how the change in the CTT channel conductance is modulated by

the timing difference (Δt = tpre − tpost) between the two pulses, mimicking the STDP behavior. In

Figure 2.14 Typical spike-timing dependent plasticity exhibited by synapses [64].

 27

both cases (Δt > 0 and Δt < 0), the time segment 3 is the main programming pulse. For example,

during time segment 3 in the LTD case (Δt = tpre − tpost > 0, Fig. 2.16(a)), the source of the CTT

(pre-synaptic signal) is grounded and a high voltage is applied to its gate (post-synaptic signal,

whose amplitude decreases as Δt increases) while a drain voltage is being applied. The CTT is

programmed to have a higher VT and therefore a smaller synaptic weight. Note that the amplitude

of the gate pulse is Vp – SΔt, which, as Δt increases, decreases and results in a smaller weight

change.

Figure 2.15 Pulsing scheme to demonstrate STDP in CTT. (a) The connection: the pre-
synaptic signal is connected to the source of the CTT, the post-synaptic signal is connected to
the gate of the CTT, and the drain is biased at a constant voltage. (b) The pulsing scheme: The
voltage first drops to 0 from V1 for a period of t1, returns to Vp and then gradually decays to
V1 again.

 28

In the experiments, the CTT is first initialized with a program-erase cycle, and then

incrementally programmed to an intermediate inference current of approximately 400 nA / 0.3 µm

before going through LTD and LTP cycles. The synaptic pulses as shown in Fig. 2.15(b) with V1=

1 V, t1 = 1 ms, S = 1.3 V / 15 ms, and varying values of Vp are generated by the waveform generator

fast measurement unit (WGFMU) and applied to the CTT. For each timing-difference, the

experiment is repeated 10 times to obtain the statistical behavior.

The boxplot of conductance change as a function of the spike timing-difference is shown in

Fig. 2.17 for Vp = 2.3 V. It is clear that there is cycle-to-cycle variation, partly due to the physical

change in the CTT after each trial. It is also important to note that, as the pre- and post-synaptic

pulses are separated by more than ~ 6 ms, the pulses have very small effect on the state of the CTT.

Figure 2.16 Detailed breakdown of the applied pre- and post-synaptic pulses when (a) the post-
synaptic neuron fires before the pre-synaptic one (Δt = tpre − tpost > 0), and (b) the post-synaptic
neuron fires after the pre-synaptic one (Δt < 0).

 29

The average of the conductance change as a function of the timing difference is shown in Fig.

2.18 for different values of Vp (2.3 V, 2.1 V, 1.9 V). It is observed that the conductance change at

a given timing-difference, both in the LTP and LTD regimes, increases with the highest

programming voltage Vp. A maximum conductance of 34% and – 42% is obtained in the LTP and

LTD regimes, respectively, when Vp = 2.3V. To obtain a larger conductance change, higher Vp or

longer t1 is required.

Figure 2.17 Boxplot of the STDP behavior when Vp = 2.3 V.

Figure 2.18 Spike-timing dependent plasticity exhibited by CTT. Solid lines are exponential
curves fitted to Eq. (2.2).

 30

Fig. 2.18 also demonstrates the tunability of the STDP behavior through changing pulse

parameters. The conductance change in both LTP and LTD can be fitted as:

ΔG/G = ALTP, LTD × exp (−|Δt|/τLTP, LTD) (2.2)

and the values of the fitting parameters ALTP, LTD and τLTP, LTD for different values of Vp are listed

in Table 2.1. Both A and τ increase as Vp increases. In practice, V1, t1, and S can all be modified

to obtain the desired STDP behavior.

2.4 Weight-dependent plasticity

For many cases of unsupervised learning, for example winner-takes-all (WTA) clustering and

temporal correlation detection, as will be discussed in Chapter 3, a device characteristic - the

weight-dependent plasticity, is desired. It requires that the change of inference current (or channel

conductance) be dependent on the conductance itself.

The subthreshold OFF-conductance (GOFF) of the CTT at VDS = 50 mV and VGS = 0 is used as the

synaptic weight. In the LTD regime where the weight is to be decreased, a positive gate pulse is

applied and electrons are trapped into HfSiOx through the interfacial layer (IFL), increasing VT and

decreasing GOFF (Fig. 2.19(a)); in the LTP regime, a negative gate pulse is applied and trapped

electrons tunnel back into the channel, decreasing VT and increasing GOFF (Fig. 2.19(b)). In the

experiments, a CTT is first pre-programmed to an intermediate starting state by applying a gate

Table 2.1 Parameters from the fitted Equation (2.2).

Vp (V)
LTP LTD

A (%) τ (ms) A (%) τ (ms)
2.3 52.25 2.588 −66.47 2.306
2.1 33.21 2.258 −52.01 1.904

1.9 28.26 1.437 −41.77 1.304

 31

pulse of 2.5 V for 60 μ s with VD = 1.3 V. The device subsequently goes through four cycles: two

LTD and two LTP cycles, with 256 trapping or detrapping pulses in each cycle. In the LTD cycle,

GOFF is decreased by a 20-μs, 2.5 V gate pulse with VD = 1.3 V; in the LTP cycle, GOFF is increased

by a 50-μs, − 2.6 V gate pulse with zero drain bias. The resulting GOFF is shown in Fig. 2.19(c) where

a reversible and reproducible modification of synaptic weights can be observed. Over 200 levels

are achieved for both LTP and LTD regimes with a fine resolution of less than 1 nS for LTP and

0.25 nS for LTD. As we will show later in Section 3.1.2, although the LTD has a smaller dynamic

range, it will not affect the convergence of the learning algorithm.

We show in Fig. 2.20(a) the relative GOFF change as a function of GOFF itself when five trapping

and detrapping pulses as specified above are applied. It is observed that, in the LTP regime, the

relative GOFF increase is smaller when the initial GOFF is larger; on the contrary, in the LTD regime,

the relative GOFF reduction is larger when the initial GOFF is larger. The curves corresponding to the

LTP and LTD regimes are fitted to exponential and sigmoid functions, respectively, for different

programming times (Fig. 2.20(b)). As expected, a longer programming time consistently leads to

a larger GOFF change because of the larger VT change caused by more trapped/detrapped charge [58].

Figure 2.19 Configurations of the CTT in the (a) LTD and (b) LTP regimes. (c) Reversible
and reproducible device conductance change through four cycles.

 32

2.5 Variation of CTT

We have seen from Section 2.2.3 that the inference current of a CTT gradually increases after

the device is programmed, and the increase is larger for a smaller target current. This makes the

block write-verify process necessary when programming a CTT array to accurate weight values.

In this Section, we show statistical results on the programming behavior of a custom-built twin-

cell CTT array with 10 word lines (WLs) and 8 bitline (BLs) to further establish the necessity of

the block write-verify approach.

In one programming cycle, 500-µs programming pulses with VD = 1.2 V and varying VG (2.1

V, 2.4 V, and 2.7 V) are applied sequentially to the CTTs in the array. After each programming

cycle, the inference current Iinf of all CTTs in the array is measured at VG = 200 mV and VD = 50

mV. To suppress the channel current from other CTTs in the same column, −0.3 V is applied to

their gates. The evolution of average VT and Iinf with the number of programming pulses is shown

in Fig. 2.21. As expected, both the VT increase and the Iinf reduction are higher for a higher gate

Figure 2.20 (a) The weight-dependent plasticity when five trapping/detrapping pulses are
applied in the LTD/LTP regimes, respectively. (b) Fitted curves when pulses of different
widths are applied.

 33

programming voltage. The highest achievable ΔVT is 115 mV when the device is programmed for

a total of 30 ms at VG = 2.7 V.

Figure 2.21 The evolution of average (a) VT and (b) Iinf with the number of programming
pulses, for different gate programming voltage. Each programming pulse is 500-µs long and
the total programming time is 30 ms.

Figure 2.22 Statistics of (a) VT and (b) Iinf with the number of programming pulses, for
different gate programming voltage. Each programming pulse is 500-µs long and the total
programming time is 30 ms.

 34

Fig. 2.22 shows the average as well as the standard deviation of the VT and Iinf. It is clear that

there exists substantial device variation. When the Iinf of a device needs to be programmed to a

specific value, for example when CTTs are used as synapses in an inference engine described in

Chapter 4, although first-order estimate can be made to determine approximately how long a

programming pulse is necessary, the Iinf needs to be verified after the pulse and a decision to apply

or not apply another pulse is made.

 35

3. CTTs in Unsupervised Learning

As discussed in Section 1.1, by conducting in-memory computation, analog-synapse-based

neuromorphic systems do not need to constantly fetch data between the memory and the CPU,

therefore significantly reducing the power and time required. Various analog synapses have been

explored in neuromorphic systems for both unsupervised learning and supervised learning.

In this chapter, two algorithms for unsupervised learning, namely, winner-takes-all (WTA)

clustering and temporal correlation detection, are investigated, using CTTs as the analog synapses.

It is shown that the algorithms can indeed be implemented with CTTs and are robust to device

variations. Experimental demonstration of these algorithms using the custom-built CTT arrays is

also discussed.

3.1 Winner-takes-all network

3.1.1 Background

In this era of mass connectivity (social media, internet of things, etc.), a vast amount of data is

being generated every day. However, 80% of these data is unstructured, making extracting

valuable information out of them a very challenging task. One of the many ways to analyze the

data is clustering - to categorize data into subgroups such that the data points within each group

are “similar” to each other. Note that there is no universal definition of “similar”, and the division

of data might not be unique. A good example of clustering can be found in social media. People

can be categorized into different “professions” according to who they interact with, what their

topics of interest are, and even what they eat.

 36

Various algorithms in software have been developed for clustering purposes, including winner-

takes-all (WTA) and k-means clustering. These algorithms can also be implemented in hardware

[66, 67]. For example, Serb et al., in [66] reported a WTA network with TiO2-based memristors.

In their work, a one-layer WTA network with four input neurons and two output neurons is

constructed to cluster two simple four-bit binary patterns: 1001 and 0110, and noisy versions of

them. The four synapses corresponding to one output neuron are implemented in software and the

other four are implemented with memristors (Fig. 3.1(a)). Specialization functions are used to

monitor the quality of clustering. As can be seen in Fig. 3.1(b), the two patterns are well separated

after ~ 100 pattern presentations, even though there is significant device variation (Fig. 3.1(d)).

Kim et al. in [67] reported a similar simulation study in 2018. They fabricated a thin-film

transistor (TFT)-type NOR flash memory cell with a half-covered floating gate and experimentally

demonstrated the LTP/LTD characteristics in it (Fig. 3.2). Using experimental data in the

simulation, they then investigated the learning of a single pattern from the MNIST dataset, as well

as the learning of ten different patterns.

Figure 3.1 Results of a simple 4´2 WTA clustering network implemented by memristors and
software [66]. (a) The structure of the WTA network. Four input neurons correspond to the
four bits in a pattern, and two output neurons correspond to two clusters. (b) Evolution of the
“specialization” function which indicates the quality of the clustering. (c) The evolution of
membrane potentials as the network is trained. (d) Evolution of the synaptic weights. (e) and
(f) Clustering results before (e) and after (f) training. “d” indicates a one-bit-flipped version of
the pattern.

 37

The key feature of a device that enables its use for a WTA network is the weight-dependent

plasticity discussed in Section 2.4. We will first use experimentally measured CTT characteristics

to study the feasibility of CTT for use in a WTA network (Section 3.1.2), followed by the

experimental demonstration in Section 3.3.2.

3.1.2 Simulation results with CTT characteristics

A one-layer WTA network aiming at classifying stylized letters z, v, n, and one-bit-flipped

noisy versions of them is studied here using CTTs as the synaptic devices (Fig. 3.3(a)). Prezioso

et al. in [68] used the same problem for back-propagation training with memristors, but here it is

used for unsupervised learning instead. The input layer of the network has nine neurons

corresponding to nine pixels of the pattern and the output layer has three neurons corresponding

to the three categories: z, v, and n, respectively (Fig. 3.3(b)).

Figure 3.2 Device structure and LTP/LTD characteristics exhibited by a TFT-like NOR flash
cell [67]. (a) Schematic of the device structure and the connection of pre- and post-synaptic
signals that cause a weight update. (b) LTP/LTD characteristics.

 38

For each output neuron j (1, 2, or 3), its output is determined by 𝑦" = ∑ 𝑥&𝐺&,")
&*+ , where Gi,j is

the channel conductance of the CTT between the input neuron i and the output neuron j, measured

at VGS = 0 and VDS = 50 mV, and xi is the input which is 50 mV when the i th pixel is black (firing)

or 0 when the i th pixel is white (not firing). For each presentation of a pattern, the neuron with the

largest output fires and claims the pattern, and only the 9 synaptic weights associated with this

neuron are updated (hence, winner takes all) and the other synapses remain unchanged.

Specifically, only when the output neuron j has the largest output and fires (wins) are Gi,j (i = 1

− 9) updated. In theory, it has been shown that an optimal weight update follows the weight-

dependent plasticity rule [69]:

∆𝐺 ∝ 1 − 𝑓(𝐺) if the weight is to be increased, and

∆𝐺 ∝ −𝑓(𝐺) if the weight is to be decreased.

where f(G) is a function of the conductance G. The weight-dependent plasticity behavior in CTT

resembles this rule very well, indicating that CTTs might be used as synapses in a WTA network

for clustering.

When the output neuron j fires, Gi,j is increased by detrapping pulses if the input neuron i also

fires or decreased by trapping pulses if the input neuron i does not fire. As shown in Fig. 3.4, in

Figure 3.3 (a) The patterns to be clustered: stylized letters z, v, n and noisy versions of them.
Reproduced from [68]. (b) The 9´3 WTA network. Output neurons of different colors
correspond to different categories. Adapted from [65].

 39

the simulation, we start from CTTs with random conductances ranging from 50−150 nS. Training

of the neural network starts with randomly selecting a pattern from z, v, or n with equal probability

and presenting it to the network. Then a random bit of the pattern is flipped and the noisy version

is presented to the network again. After each pattern presentation, formulas fitted from

experimental data in Section 2.4 is used to update the synaptic weights. The entire process is free

of any intervention.

In the simulation, a total of 1000 patterns are presented to the neural network with 500 correct

ones and 500 noisy ones. Two trapping (20-μs, 2.5 V gate pulse with VD = 1.3 V) and detrapping

pulses (50-μ s, − 2.6 V gate pulse with zero drain bias) are applied to decrease or increase Gi,j,

respectively. Figs. 3.5(a) and (b) show the clustering results for the first and the last 100

presentations, respectively. It is observed that a substantial number of misclassifications occur in

the first 100 cycles, while all patterns are correctly classified for the last 100 cycles. To better

Figure 3.4 Flow chart for WTA network training.

 40

understand the convergence behavior of the algorithm, a specialization function, Si, is defined for

each output neuron i, as the pattern x (z, v, or n) which yields the largest output yi for the neuron.

Perfect clustering is achieved when the neuron specializations remain constant and correspond to

three different patterns as the neural network is trained. Fig. 3.5(c) shows the specializations of the

output neurons as the network is trained. In fact, perfect clustering is achieved after only 82 training

cycles, after which Neurons 1, 2, and 3 correspond to patterns n, v, z, respectively. Between points

A and B, even though the specializations of Neurons 2 and 3 stay constant, the algorithm is not

convergent since both neurons claim the letter v. It should be further noted that this example is

only to illustrate the evolution of specializations and does not represent a typical case. It is verified

through 10,000 simulation runs that, the average number of cycles after which perfect clustering

is achieved is only 24, well within the demonstrated endurance of over 1,000 for CTT-based non-

volatile memory [58].

Fig. 3.6 depicts an example of the evolution of the synaptic weights G1,1 and G2,1. It is observed

that, the sharp decreases in G2,1 are larger than the sharp increases in G1,1. This is caused by the

asymmetry between LTP and LTD found in Fig. 2.19(c). It is also observed that, the weights,

starting from random values, eventually reach a steady state after which each weight only varies

Figure 3.5 Fire counts from three output neurons (a) before and (b) after training. Blue, red,
yellow: output neurons 1, 2, and 3. “” denotes a noisy version. (c) The evolution of the output
neuron specializations as the network is trained. Adapted from [65].

 41

around a certain value. In this example, the steady-state is 23.8 nS for G1,1 and 93.2 nS for G2,1 for

the last 100 cycles when two trapping/detrapping pulses are applied in the LTD/LTP regimes.

These two values, representing respectively “low” and “high” weights after training, vary with the

applied programming conditions. For instance, when five trapping/detrapping pulses are applied,

a “low” of 15.2 nS and a “high” of 95.8 nS are obtained. When a longer programming pulse is

applied, larger conductance change is induced in each update step, leading to higher “high” and

lower “low” eventual weights. Larger weight changes also result in faster convergence and a

smaller noise margin. It is anticipated that the amplitudes of the trapping/detrapping pulses will

have similar effects on the convergence behavior.

In practice, when actual CTTs are used to construct the neural networks, the effect of device

variation on the robustness of the algorithm needs to be evaluated. We illustrate here the example

where two trapping and detrapping pulses are used to update the weights (Fig. 3.7(a)). An

empirically determined variation of Gaussian distribution with 3σ of f10pulse – f2pulse is added to the

conductance change calculated from fitted equations, where f10pulse denotes the fitted conductance

change when ten pulses are used to update the weights and f2pulse denotes the fitted conductance

Figure 3.6 An example of the evolution of synaptic weights G1,1 (blue) and G2,1 (red) for different
programming times: (a) Two pulses are applied for LTD/LTP, and (b) Five pulses are applied
for LTD/ LTP. Adapted from [65].

 42

change when two pulses are used to update the weights. More variation is introduced when G > 60

nS in the LTP regime and when G < 40 nS in the LTD regime to better approximate the

experimental data. With this variation, the simulation was performed for 10,000 times and a 100%

perfect clustering rate was achieved. Fig. 3.7(b) depicts an example of DG as a function of the

conductance G itself from one of these simulation runs. It is indeed observed that the conductance

change with the empirically introduced variation is comparable to the experimental data. With this

methodology, it is also found that a longer programming time leads to a less robust algorithm:

perfect clustering cannot be achieved when five LTP/LTD pulses are applied. It means that the

effects of the variation are smaller when the programming time is shorter. This is because a shorter

programming time corresponds to a smaller DG in each update step.

The energy consumption in the LTP regime is minimal since it is only due to electrons being

detrapped from the high-k layer. In the LTD regime, the energy dissipation is mainly through the

channel current because of the drain bias; it is given by 𝐸 = 𝑉5 ∫ 𝐼5d𝑡 where ID is the channel

current. For a device with a W/L = 20 nm / 20 nm and programming conditions specified above,

E is estimated to be 0.5 nJ. This is a reasonable value compared to the range of pJ to hundreds of

nJ reported for many other synapse candidates [44]. This makes the CTT a promising candidate to

be used as efficient synapses in low-power online learning networks.

 43

3.1.3 Experimental demonstration

Array-level demonstration is next presented using custom-built standalone arrays. The CTT

array has 10 WLs and 8 BLs, with individual and direct access to the terminals of each CTT via

two rows of 25×1 scribe line monitor (SLM) pads. The layout of the array together with the SLM

pads are shown in Fig. 3.8. During testing, these pads are directly contacted simultaneously by a

custom-built probe card. Custom applications are compiled in EasyEXPERT to program and

measure the CTT devices.

Figure 3.7 (a) Experimentally measured and (b) Empirically determined relative conductance
change as a function of the conductance itself in the LTP and LTD regimes. The algorithm
converges with the variation shown in Fig. (b). Adapted from [65].

 44

The clustering of stylized letters z, v, and n is demonstrated here in hardware. Nine rows and

three columns are selected to represent the 9×3 CTT array (Fig. 3.9). When a CTT is to be

programmed according to the WTA rule, its BL is grounded, and the drain and gate programming

pulses are applied to its SL and WL, respectively. All other WLs are grounded to mimic what

happens in an integrated chip. On the contrary, when a CTT is to be erased according to the WTA

rule, a −1.3 V gate pulse and 1.2 V drain pulse are applied to its WL and SL, respectively, while

all other WLs are grounded and SLs floating. A negative gate pulse is necessary to avoid high

drain-to-gate voltage on the devices in the same column, which can cause unintended erasure.

Figure 3.8 The standalone CTT array and two rows of 25×1 scribe line monitor (SLM) pads
used to directly access all terminals of each CTT individually.

 45

Before the experiments, all CTTs are initialized by a programming pulse to an intermediate

state, to allow for subsequent trapping and de-trapping. Using the same array, three trials were

performed sequentially. After each trial, the array is erased and initialized again to prepare for the

next one. In each run, 40 patterns are presented (the stylized letters z, v, n, and noisy versions of

them). The clustering results are examined thereafter and summarized in Fig. 3.10.

As shown in Fig. 3.10, the three runs have a clustering error of 1, 0, and 2 counts, respectively,

averaging to an accuracy rate of 96.7%. This is lower than the perfect clustering as predicted in

Figure 3.9 Use of the standalone array for demonstration of the WTA network. Three columns
are selected corresponding to three neurons of different colors. Also shown is the pulse
configuration when a CTT (Row 2, Colum 1) is programmed.

Figure 3.10 Clustering results of the three trial runs.

 46

Section 3.1.2, due to the combined effects of inter-device and cycle-to-cycle variations, and also

the half selection issue in an array setting. Nevertheless, this demonstration remains, to the best of

our knowledge, the largest array-level WTA network that has been implemented using analog

memory. For reference, in [66], only four synapses were implemented in hardware, and [67]

provided only simulation, using device data from a single thin-film transistor. This work also

demonstrates that the half selection issue is not detrimental to the network operation.

We show in Fig. 3.11 the evolution of the 27 synaptic weights during the course of the pattern

presentations in Run 2. In Fig. 3.11(a), no apparent patterns exist in the current map before any

presentations. After 30 presentations, different patterns emerge in the three neurons, corresponding

to the letters v, z, and n, respectively. Note that, in Run 2 of Fig. 3.10, the three neurons also

specialize to patterns v, z, and n, respectively. This specialization of neurons to the corresponding

patterns is a general feature in WTA networks, as shown in [66] and [67], and simulations in

Section 3.1.2.

Shown in Fig. 3.11(b) is an example of the current evolution of two CTTs as circled in green

in Fig. 3.11(a). It is important to note that the current does not stay constant even if the CTT is not

programmed, an effect of the half selection.

 47

In this Section, we demonstrated the WTA network using the actual hardware in

GlobalFoundries’ 22FDX technology. Although perfect clustering was not obtained for all

experiments due to inter-device and cycle-to-cycle variations, an average 96.7% clustering

accuracy is reasonable. In addition, to the best of our knowledge, this is the first demonstration of

a WTA network in an array.

Figure 3.11 (a) The evolution of the synaptic weights. (b) Detailed look at the weight evolution
of two CTTs circled by green in Fig. (a).

 48

3.2 Temporal correlation detection

3.2.1 Background

The main purpose of temporal correlation detection is to identify, among many stochastic

processes, a group of processes that are correlated. In other words, suppose there are N binary

processes X1, X2, … XN, each taking the value of 1 at a probability of p and 0 at a probability of

1−p at any time instance, the problem is to determine a subset(s) of X1 to XN in which all processes

are correlated (Fig. 3.12). Statistically, this problem is traditionally solved using k-means

clustering or the covariance matrix. We shall first briefly review the two methods to reveal the

complexity involved, and then formulate how CTT device dynamics can be exploited to solve the

problem.

K-means clustering focuses on finding k partitions {S1, S2, … Sk} of the processes and the

corresponding centroids C1, C2, … Ck, such that

∑ ∑ ||𝑋 − 𝐶&||=>∈@A
B
&*+ (3.1)

is the smallest among all possible partitions and centroids. Here ||•|| denotes the Euclidean distance.

This problem is very difficult to solve, and simplified algorithms are often used instead as

approximate solutions. The following is a step-by-step breakdown of one such example (Fig. 3.13).

Figure 3.12 Schematic illustration of the temporal correlation detection problem.

 49

(1) Start from a random set of centroids, C1(0), C2(0), … Ck(0).

(2) For each Xi (i = 1, 2, … N), calculate the Euclidean distance between Xi and Cj (j = 1, 2, …

k), Dij = ||Xi − Cj||. Assign Xi to Cluster j which yields the smallest Dij.

(3) For each cluster Si, update its centroid Ci(M) to the centroid of all processes assigned to Si

in Step (2).

(4) Repeat from Step (2).

Due to the random initialization of centroids, the same process is usually carried out multiple

times to find the best solution. It is clear that k-means clustering requires data storage at all time

instances and a large number of calculations of Euclidean distance between high-dimension

vectors. This method is very time-consuming and requires a lot of memory.

Another method to detect temporal correlation is to use the covariance matrix [70]. It requires

the calculation of

𝑅&" =
+
D
∑ 𝑋&(𝑘)𝑋"(𝑘)D
B*+ (3.2)

Figure 3.13 Flow chart of a simplified k-means clustering algorithm. The process is usually
repeated multiple times to find an optimal solution.

 50

and the subsequent calculation of

𝑊& = ∑ 𝑅&"G
"*+ (3.3)

In the limit of large K, the expectation of Wi can be estimated. It can be shown that, if E(Wi) = (N

− 1)p2 + p, then Xi belongs to the uncorrelated group; on the contrary, if E(Wi) > (N − 1)p2 + p,

then Xi belongs to a correlated group. Still, a significant amount of computation is necessary.

In [70], Sebastian et al. utilized the crystallization dynamics of PCM to significantly simplify

this problem. At each time instance k, a current pulse is applied to the PCM whose corresponding

process takes a value of 1. The amplitude or the duration of the current pulse is proportional to

𝑀(𝑘) = ∑ 𝑋&(𝑘)G
&*+ , which can be obtained with little computation effort. Using this approach, the

authors demonstrated the satisfactory separation of PCM conductance for correlated and

uncorrelated processes. The same method was also employed to detect the correlation of real-world

rainfall data collected from 270 weather stations across the United States. Their experiments show

that, out of the 270 stations, 245 are classified in the same way by the PCM-based approach and

the k-clustering algorithm. In comparison, 251 are classified in the same way by the covariance

approach and the k-clustering algorithm, a mere 2.4% improvement over 245. Considering that

there is significant variation in PCM (Fig. 3.14), and that the procedure is very fast and requires

little computation effort, their results are very promising.

 51

3.2.2 Simulation results with CTT characteristics

The key characteristic of PCM that enables its use as an in-memory computation unit is its

amplitude- or pulse-number-dependent programming (Fig. 3.15): the higher the programming

current, and/or the longer the programming pulses are applied, the larger the conductance is.

CTTs have similar programming dynamics: the conductance change is larger when more

pulses are applied, or the voltage amplitude is larger. We demonstrate in this Section that this

dynamics can indeed be exploited for temporal correlation detection. Shown in Fig. 3.16 is a

typical relationship between the CTT conductance and the number of programming pulses when

20-µs, VG = 2.6 V and VD = 1.2 V pulses are applied. Also shown is the empirically fitted curve

𝐼 = 𝐶 × 10KLMNOLP(G/R)STP+T (3.4)

where C is a constant, α reflects the largest VT shift, t reflects the steepness of the curve, and β

reflects the trap distribution. Here, C = 241.3 nA, α = 1.5, t = 170.9, and β = 0.5.

Figure 3.14 Mean and standard deviation of the PCM used in [70] when the SET current is 100
µA.

 52

Taking advantage of this characteristic of CTT, we next investigate the feasibility of CTT-

based temporal correlation detector. An approach similar to that in [70] is adopted with one

Figure 3.15 Amplitude- and pulse-number-dependent programming
behavior exhibited by PCM used in [70]. Each point on the curves is an
average from 10,000 devices.

Figure 3.16 CTT conductance as a function of the number of programming pulses. Black dots:
experiment; blue curve: empirically fitted curve. Here, the pulse is fixed at 20 µs, VG = 2.6 V,
and VD = 1.2 V.

 53

distinction: in their study, the amplitude or the duration of the current pulse is proportional to

𝑀(𝑘) = ∑ 𝑋&(𝑘)G
&*+ , while here, a fixed pulse (both in voltage amplitude and time duration) is

applied to the CTTs if M(k) exceeds a certain threshold, and no pulses are applied otherwise.

For the purpose of demonstration, a 600×800 black-and-white image shown in Fig. 3.17 is

used. The 480,000 pixels correspond to 480,000 stochastic processes: the processes corresponding

to the black pixels are correlated while others are uncorrelated. In this example, 143,402, or 29.9%

processes are correlated. At each time instance, the uncorrelated processes have a probability of p

to assume the value of 1 and a probability of 1 − p to assume the value of 0. For the correlated

processes, a reference process is first selected. If the reference process assumes the value of 1 at

any time instance, then other correlated processes have a probability of 𝑝 + √𝑐(1 − 𝑝) to assume

the value of 1; otherwise, other correlated processes have a probability of 𝑝(1 − √𝑐) to assume

the value of 1. Here, c is the correlation coefficient of the correlated processes. In the following

results, p is equal to 0.1 unless otherwise stated.

Figure 3.17 A black-and-white image used for the demonstration of temporal correlation
detection with CTT. Black pixels correspond to correlated processes while white pixels
correspond to uncorrelated ones.

 54

480,000 CTTs are randomly initialized with their inference currents uniformly distributed

between 100 and 300 nA. At each time instance, if and only if 𝑀(𝑘) = ∑ 𝑋&(𝑘)G
&*+ > η = 6×104 is

a 20-µs pulse with VG = 2.6 V and VD = 1.2 V applied to the CTTs corresponding to a firing

process and the inference current is updated according to Eq. 3.4. Fig. 3.18(a) shows an example

of the inference current distribution for the correlated and uncorrelated processes after 1,000 time

instances when c = 0.05. It is clear that the inference currents of CTTs for correlated and

uncorrelated processes are separated, though not completely, even for a correlation coefficient as

small as 0.05. To build a classifier, one can select a threshold inference current and label any

processes with a current less than the threshold “correlated”. For example, Fig. 3.18(b) shows the

reconstructed image when a threshold of 80.5 nA is selected. The fidelity is high with some black

dots in the white area and some white dots in the black area.

A quantitative way to evaluate the performance of a temporal correlation detector is the so-

called precision-recall curve. For each threshold inference current selected, two quantities can be

Figure 3.18 Temporal correlation detection achieved by CTT after 1,000 time instances when
c = 0.05. (a) The separation of CTT inference currents between correlated and uncorrelated
processes. (b) The reconstructed image when a threshold inference current of 80.5 nA is used
by the classifier.

 55

computed: (1) recall, which is the ration between the number of correctly labeled processes to the

total number of correlated processes, and (2) precision, which is the ratio between the number of

correctly labeled processes to the number of all processes labeled as “correlated”. An example of

the precision-recall curve for the detector in Fig. 3.18(a) is shown in Fig. 3.19. The reconstructed

image in Fig. 3.18(b) uses a threshold inference current of 80.5 nA, which corresponds to a recall

of 0.9 and a precision of 96.24 % in Fig. 3.19.

It is natural to anticipate the degradation of the detector performance as the correlation

coefficient decreases. Fig. 3.20(a) clearly shows this trend. As shown in Fig. 3.20(b) for c = 0.02,

it is worth noting the increased overlap between currents for correlated and uncorrelated processes

compared to Fig. 3.18(a) where c = 0.05. Also note the much lower quality of the reconstructed

image when the recall is 0.9. In this case, the precision is only 77.39 %. When c = 0.01, if a 100%

recall is required, the precision drops to 29.9 %, identical to that of a random classifier.

Figure 3.19 Precision-recall curve of the detector in Fig. 3.18(a).

 56

The area under the curve (AUC) is a good measure of the detector performance. Fig. 3.21

shows the general relationship between AUC and the correlation coefficient. It is seen that, even

at a correlation coefficient of only 0.01, the correlation detector classifies about 2.4 times better

than a random classifier. At a correlation coefficient of 0.1, the classifier is close to a perfect one

with an AUC of 0.9994.

Figure 3.20 (a) Precision-recall curves for different correlation coefficients: 0.1 (red), 0.05
(blue), 0.02 (yellow), and 0.01 (purple). (b) The histogram of inference currents for correlated
and uncorrelated processes when c = 0.02. The inset shows the reconstructed image at a recall
of 0.9.

 57

It is insightful to observe the evolution of the reconstructed image as time goes by. Fig. 3.22

shows the reconstructed images after different number of time instances. Continued improvement

is clearly seen as more data becomes available in a longer period of time.

Fig. 3.23(a) illustrates the evolution of the precision-recall curve, where improving precision

can be observed as more time instances are presented to the detector. Fig. 3.23(b) shows how the

AUC changes as time goes by.

Figure 3.21 Area under the curve (AUC) of the precision-recall curves in Fig. 3.20(a) as a
function of the correlation coefficient. The dashed line is the performance of a random
classifier.

Figure 3.22 The evolution of the reconstructed image (at recall = 0.9) at different time instances
k = 200, 400, 600, 800, and 1,000. Improving fidelity can be observed.

 58

We have shown that CTTs can be used to detect, among many stochastic processes, a group of

correlated ones. We next show the possibility of using CTTs to identify more than one group of

correlated processes. Here, 500,000 stochastic processes are used. Among them, there are 400,000

uncorrelated processes and two correlated groups each having 50,000 processes. The two

correlated groups have a correlation coefficient of 0.8 and 0.4, respectively. Fig. 3.24 shows the

histograms of CTT inference currents corresponding to the three groups. It is clear that the currents

are well separated.

Figure 3.23 (a) The precision-recall curves at different time instances k = 200, 400, 600, 800, and
1,000. (b) AUC of the curves in Fig. (a). The dashed line is the performance of a random classifier.
Here, p = 0.1 and c = 0.05.

 59

Up to this point, it has been demonstrated that the CTT device dynamics can be utilized for

temporal correlation detection. In practice, however, devices are not ideal, and variations can play

a significant role in the detector performance. There is more than one source of variations. First,

there is process variation resulting in different device initial states. For example, the standard

deviation of VT is approximately 25 mV, translating to about 2× difference in the inference current.

Second, different devices may program differently. Third, there is intra-device cycle-to-cycle

variation as can be observed in Fig. 3.16. This is due to the stochastic nature of the charge-trapping

process. The last two effects are much more difficult to evaluate through simulation. Here, we

focus on the effect of initial CTT states and will show experimental results in the next Section. Fig.

3.25 shows the statistical precision-recall curves for different correlation coefficients c = 0.1, 0.05,

0.02, 0.01. Each curve represents results from 1,000 runs, each starting from random CTT

inference currents uniformly distributed between 100 nA and 300 nA. Each run also uses different

stochastic processes. It is seen that the four curves are well separated, indicating that the effects of

Figure 3.24 An example of the detection of two correlated groups and an uncorrelated one.
The correlation coefficient for the two correlated groups are 0.8 and 0.4, respectively. It is
clear that the inference currents corresponding to the CTTs belonging to the three groups are
well separated.

 60

initial weight distribution are not detrimental, and that one can infer the correlation coefficient

from the shape of the precision-recall curve.

3.2.3 Experimental demonstration

Half of the standalone array is used here for the demonstration of temporal correlation detection.

The 80 devices correspond to 80 random processes, 17 of which are correlated, as indicated by the

black pixels in Fig. 3.26(b).

Figure 3.25 Statistics of the precision-recall curves for different correlation coefficients c =
0.1, 0.05, 0.02, and 0.01. Solid lines are average for 1,000 runs and the error bars indicate the
standard deviation.

 61

At any time instance, the probability of firing by any uncorrelated random process is p. For the

correlated processes, the reference process also has a probability of firing equal to p. For the non-

reference process, the probability of firing is 𝑝 + √𝑐(1 − 𝑝) when the reference process fires, and

1 − 𝑝 − √𝑐(1 − 𝑝) when the reference process does not. Different correlation coefficients c are

used and p = 0.1 unless otherwise stated. The firing threshold, η, is chosen to be 13.89 from

simulations using measured CTT characteristic.

Because there are significantly fewer CTTs in this demonstration, the effect of inter-device

and cycle-to-cycle variations are expected to be more severe since there are not enough devices or

cycles for the variations to average out. Therefore, the ratio of the post-programming CTT current

to the pre-programming one, R = Ipost/Ipre, instead of the current alone, is used to distinguish CTTs

corresponding to the correlated processes from those corresponding to uncorrelated processes.

Shown in Fig. 3.27 (a) is the distribution of this ratio for the correlated and uncorrelated processes

for c = 0.8, after 400 time instances. It is clear that the two groups are well separated. A threshold

of 0.3 is chosen here for R: if R < 0.3, the corresponding process is considered one from the

correlated group; otherwise, the corresponding process is considered one from the uncorrelated

group. The perfectly reconstructed pattern is shown in Fig. 3.27(b).

Figure 3.26 The configuration for the demonstration of temporal correlation detection using the
standalone array. Each CTT corresponds to a binary random process. The correlated processes
are indicated by black pixels in Fig. (b).

 62

In this experiment, at 51 of the 400 time instances was the firing threshold exceeded. After

each time it is exceeded and the devices are programmed, the currents of all CTTs were measured.

Fig. 3.28 shows the evolution of R for the correlated and uncorrelated groups, where it can be seen

that the CTTs corresponding to the correlated processes are almost always programmed when the

firing threshold is reached.

Two more experiments were performed using the same array (after erasing it) but with smaller

correlation coefficients: 0.5 and 0.2, respectively. The precision-recall curves after the three

experiments are shown in Fig. 3.29, where a degradation can be observed as the correlation

coefficient decreases.

Figure 3.27 (a) The distribution of current ratio after 400 time instances when c = 0.8.
(b) The reconstructed pattern using R = 0.3 as the threshold.

 63

In this Section, the feasibility of temporal correlation detection is experimentally demonstrated

using a CTT array. Although the scale of the experimental array is small, a much larger network

was simulated. Moreover, as suggested in [70], more than one CTTs can be used to represent one

random process, reducing the effects of variations.

Figure 3.28 The evolution of the current ratio R = Ipost/Ipre for the correlated and uncorrelated
groups.

Figure 3.29 The precision-recall curves after 400 time instances, for c = 0.8, 0.5, and 0.2.

 64

4. CTTs in An Inference Engine

4.1 Implementation of fully connected neural networks using CTTs

Most inference engines, including fully connected perceptrons and much more complex

convolutional neural networks, require two primitive operations: the calculation of the summation

of weighted inputs, and the activation of the result. The first primitive operation computes the

following:

𝑦" = ∑ 𝑤"&𝑥&G
&*+ ,

where xi is the input from ith input neuron, yj is the internal state of the jth output neuron, and wji

is the synaptic weight between the two (Fig. 4.1).

For gray-scale instead of binary inputs, there are two options to implement the neural network

in hardware using CTTs as the synapses. As shown in Fig. 4.2, in the first approach, a constant

gate voltage is applied a to all CTTs, which biases the devices in the linear region. A small drain

voltage proportional to the intensity (x) of the input signal is applied to the drain of CTTs such that

the drain current of the CTT is x•Gch, where Gch is the linear channel conductance at the given gate

Figure 4.1 A fully connected neural network.

 65

bias. If the CTTs are programmed in such a way that its Gch is proportional to the target synaptic

weight, then its drain current naturally represents the weighted input. Furthermore, all CTTs

corresponding to the same output neuron are arranged in the same column, making the total current

seen by the neuron the weighted summation of inputs. This current can then be sensed by an

analog-to-digital converter (ADC) and further processed in the digital domain using any activation

function. The activated values can then be converted to the analog domain again as the voltage

amplitude using the digital-to-analog converter (DAC), to be applied to the next layer.

However, this approach has a few drawbacks. First, the current is higher in the linear region

than in the subthreshold region, resulting in higher energy consumption. Second, to ensure a linear

operation of the CTT during inference, the highest drain voltage should be as small as possible,

posing additional requirements on the ADC design. Third, because the architecture involves ADC

and DAC, it is anticipated to consume a lot more power than an analog-only approach.

Another approach, as shown in Fig. 4.3, encodes the pixel intensities into the width of the pulse

applied to the gate of the CTTs − the larger the input is, the longer the pulse is applied. Because

the input information is carried by the pulse width, only a single voltage amplitude is necessary.

Figure 4.2 Illustration of the hardware implementation of a fully connected neural network
using the amplitude of drain voltage as inputs.

 66

The current flowing through the CTTs in a column is integrated by the neuron, leading to a voltage

on the capacitor of the integrator being proportional to the summation of weighted inputs:

𝑉 =
1
𝐶[𝐼&𝑡&

Here, C is the capacitance, Ii is the current of the CTT at the predetermined gate and drain bias,

and ti is the width of the gate pulse.

To implement the activation function in the analog domain, the rectifying linear unit (ReLU)

is straightforward (Fig. 4.4(a)): a comparator can be used to discharge the capacitor until the

voltage drops below a certain level Vref, after which the discharging will stop (Fig. 4.4(b)).

Figure 4.3 Illustration of the hardware implementation of a fully connected neural network
using the pulse width as inputs.

 67

Another important point is that, a twin-CTT synapse cell is necessary – the current difference

between two CTTs, I = I+ − I−, instead of the current of a single CTT, is used to represent the

synaptic weight. This is primarily due to three reasons: 1) It allows the implementation of bipolar

weights. If only unipolar weights are used, extra conversion is required in the digital domain,

compromising the potential benefits of analog computation. 2) It reduces the effect of variation. 3)

It reduces the effect of VT/current recovery after programming since the behavior will be similar

between the twin CTTs.

4.2 Fine-tuning of CTT weights

Before a CTT array can be deployed as a dot product engine to be used in an inference engine,

the synaptic weights of the twin-CTT cells need to be programmed to satisfactory accuracy first.

Fig. 4.5 shows the initial weights (at VGS = 200 mV and VDS = 50 mV bias) of a 10 WL × 4 BL

twin-CTT array as fabricated by the foundry. The weights range from approximately −800 nA to

600 nA. Forty target weights ranging from −200 nA to 200 nA are randomly generated, and then

the CTTs are programmed according to their corresponding weights. In each programming-

Figure 4.4 (a) The rectifying linear unit (ReLU) as the activation function. (b) Schematic
illustration of the simple implementation of ReLU.
.

 68

verification cycle of the entire array, all 40 twin cells are programmed. In each twin-cell, only one

of the CTTs is programmed. If the measured current difference between the twin CTTs is smaller

than the target weight, the “negative” CTT is programmed; if the measured current difference

between the twin CTTs is larger than the target weight, the “positive” CTT is programmed.

To alleviate the half selection problem, both the gate and the drain voltages need to be as small

as possible, while still being able to program the CTTs. In the experiments, gate voltage and drain

voltage start from 1.8 V and 1 V, respectively. When the programming is no longer efficient, the

voltage is increased by 50 mV, but not to exceed 2.2 V for the gate voltage and 1.2 V for the drain

voltage. Both voltages are increased by 50 mV when the programming becomes inefficient. The

width of the programming pulses is at a constant 500 µs.

Fig. 4.6 shows the programmed twin-cell current as a function of the target current, right after

the fine-tuning and 14 hours later. The goal is to have all the dots on the ideal y = x line. However,

Figure 4.5 The initial weights (at VGS = 200 mV and VDS = 50 mV bias) of an as-fabricated
twin-CTT array.
.

 69

because of the half selection and thermal disturbance from adjacent cells, as well as the limit of

programming resolution (for example, the pulses are 500-µs each, and voltage resolution is 50

mV), there is a difference between the programmed and the target current.

It is observed that, right after the programming, the programmed currents were closer to the

ideal line than 14 hours later. Fig. 4.7 shows the histogram of the difference between the

programmed and the target currents. It is clear that the distribution of the difference becomes wider

after 14 hours. Indeed, the standard deviation of the difference between the programmed and the

target currents is 23.3 nA and 34.9 nA, respectively. This deviation from the target weights after

the fine-tuning is attributed to the VT recovery discussed in Section 2.2.3. It can be easily corrected

by applying a few more pulses to the CTTs. Fig. 4.8 shows the programmed vs. target current after

8 more programming pulses, where the dots are pushed closer to the ideal line again. The standard

deviation between the target and programmed current after the correction pulses is 22.1 nA,

Figure 4.6 The programmed twin-CTT cell current vs. the target current, right after 22
programming-tuning cycles (blue) and 14 hours later.
.

 70

In another experiment, to alleviate the VT recovery issue, the target CTTs are over-programmed

such that their weights will be closer to the target after the recovery. The model in Section 2.2.3 is

used to over-program the CTTs and the relationship between the programmed and target currents

after different time periods (right after, 6 hours later, and 18 hours later) is shown in Fig. 4.9. The

Figure 4.7 The histogram of the difference between the programmed current and target current,
right after fine-tuning and 14 hours later.

Figure 4.8 The programmed vs. target current, (a) 14 hours after fine-tuning, and (b) after
applying 8 extra programming pulses after the 14 hours.

 71

standard deviations between the programmed and target currents for the three cases are

summarized in Table 4.1. It can be seen that the deviation from the ideal behavior is not as severe

as that observed when there is no over-programming involved.

To summarize, array-level twin-CTT cell fine-tuning is demonstrated in this Section using the

custom-built CTT array. Low (1.8−2.2 V VG and 1−1.2 V VD) but variable gate and drain pulses

Figure 4.9 The programmed vs. target current with CTT over-programming, (a) right after fine-
tuning, (b) 6 hours after fine-tuning, and (c) 18 hours after fine-tuning.

Table 4.1 Summary of the fine-tuning (with CTT over-programming) statistics of 30 twin-CTT
cells.

IPRG − Itarget Right after 6 hours later 18 hours later

Mean (nA) 2.5 4.86 2.4
Std deviation (nA) 27.2 25.1 25.8

 72

are needed to avoid the half selection problem. In order to have a good linear relationship between

the programmed and target currents after a period of VT recovery, over-programming of CTT is

necessary. A 25.8 nA standard deviation of the difference between the programmed and target

currents is demonstrated, which corresponds to 6.45% of the dynamic range of the synaptic

weights. More accurate programming is anticipated but with more cycles and finer control of the

gate/drain voltage and the programming pulse duration. In Section 4.4, the effect of the difference

between the programmed and the ideal weights will be discussed.

4.3 Dot product engine using a CTT array

In this Section, the use of a programmed CTT array as a dot product engine is discussed. The

10×3 twin-CTT array programmed in the previous Section is used as the experimental platform.

Thirty binary test patterns with ten inputs each are applied to the CTT array as WL voltages:

VG = 200 mV is applied when input is 1 and VG = −300 mV when the input is 0. The current of

each column is measured using the configuration shown in Fig. 4.10. Fig. 4.11 shows the

relationship between the measured weighted summation of inputs (current) and the ideal one, right

after the fine-tuning and 18 hours later. It is worth noting that because the CTTs were intentionally

over-programmed in the fine-tuning process, the dot product engine behaves better after 18 hours.

The standard deviation of the difference between the measured and ideal currents decreases from

51.23 nA to 38.81 nA after 8 hours, or from approximately 5% to < 4% of the current range.

 73

The stability of the dot product engine is also examined. Before measuring the column currents,

individual CTT currents at the same bias are first measured in a block of time, t1 to t2. The column

currents for all 30 test patterns are measured from t3 to t4. Here, the scan of individual CTT currents

takes approximately 10 minutes and the measurement of all column currents takes around 20

minutes. Because of the VT recovery within the 30-minute measurement window, a difference in

the measured column current and the column current calculated from individual device current is

anticipated. Fig. 4.12 shows this difference. It is important to note that, as time goes by, the

standard deviation of the difference between the measured and calculated currents becomes

Figure 4.10 The configuration to measure column currents. VG = 200 mV is applied when
input is 1 and VG = −300 mV when the input is 0.

Figure 4.11 The relationship between the measured weighted summation of inputs (current)
and the ideal one.

 74

smaller, indicating that the change in device becomes smaller in a set period of time as the devices

are rested for longer. After 18 hours for example, the standard deviation is only 11.12 nA, or

approximately 1.1% of the current range.

Although the dot product engine has certain inaccuracy, it will be clear in next Section that,

even with this kind of inaccuracy, the accuracy of inference is still within a reasonable acceptability,

especially for applications where low-power is preferred over high accuracy.

Figure 4.12 The relationship between the measured weighted summation of inputs (current)
and the calculated one (using individual CTT currents). (a) Immediately after fine-tuning, (b)
6 hours later, and (c) 18 hours later.

 75

4.4 Consideration of imperfections: effect of weight variation

There are two modes of a neural network: training and inference. Training is typically done in

more than 32-bit precision floating point, and almost exclusively using GPU. Although there have

been some reports on using emerging memory devices for this purpose [68, 71], the demonstrated

network is very small with only tens of synapses, mainly due to substantial variation exhibited by

those analog memory devices. For the inference mode, however, it is widely recognized that 8-bit

weight precision is sufficient for most applications. For example, Google’s tensor processing unit

(TPU) uses 8-bit quantization of the trained weights and handles their datacenter’s demand very

well [72].

In order to have an inference engine utilizing CTTs as the analog synapses, the degradation in

the inference accuracy as a result of the imperfect programming of the analog array needs to be

evaluated. In this Section, two cases are investigated: a small two-layer neural network for the

MNIST digit recognition, and the last fully connected layer in the GoogLeNet [73].

The two-layer network with 100 hidden neurons is trained using the standard back-propagation

algorithm with 16-bit precision to achieve an accuracy of 97.3% on the 10,000 testing patterns,

after which quantization of the weights in both layers is performed. Fig. 4.13 shows the relationship

between the classification accuracy and the number of discrete weight levels. It is observed that

when the weights are discretized to 10 levels, the degradation of the classification accuracy from

the ideal case is only less than 0.3%. This indicates that the neural network is very robust to weight

variations.

 76

In practice, CTTs are not programmed to discrete weight levels. Instead, they will be

programmed to continuous, analog weights, albeit with some imperfections. Fig. 4.14 considers

this case. For each percentage of randomness in the weights, 1,000 Monte Carlo simulation runs

are performed. In each run, a normally distributed variation (whose standard deviation is equal to

the percentage times the weight range) is added to each ideal weight in both layers and the

classification accuracy on 10,000 patterns are obtained. In Fig. 4.14, it is observed that the average

accuracy of 1,000 simulation runs degrades by less than 1% even when the standard deviation of

the random variation is as high as 50% of the weight range. When the standard deviation is 10%

of the weight range (considering that the value for CTT is about 6%, as shown in the previous

Section), the classification accuracy is 97.28%, a mere 0.02% degradation from the ideal case.

Figure 4.13 The relationship between the classification accuracy and the number of discrete
weight levels.

 77

The impact of the imperfect programming of a CTT array on the classification accuracy of

much more complicated neural networks also needs to be evaluated. Here, the last fully connected

layer just before the softmax in the GoogLeNet is considered (Fig. 4.15) [73]. GoogLeNet is a

deep convolutional neural network aiming at the ImageNet challenge [62].

Figure 4.14 The degradation of MNIST classification accuracy as the variation in weights
increases.

Figure 4.15 The structure of the GoogLeNet with the last fully connected layer highlighted
[73].

 78

The inputs to the fully connected layer are calculated from the GPU/CPU trained network and

are discretized to 8 bits to emulate a realistic hardware. In hardware, the input information can be

in the form of a voltage amplitude applied to the drain of the CTT or a pulse width applied to the

gate. Fig. 4.16 shows the degradation of the top 5 and top 1 accuracy as the variation in the weights

increases. At σ equal to 10% of the weight range, the top 5 and top 1 accuracy drops from 87.44%

to 84.48%, and from 66.3% to 60.13, respectively. Recall that the σ for a CTT array is around 6%,

which decreases the accuracy to 86.34%, an equivalent error rate increase of 8.76%.

To summarize, a fully connected neural network utilizing CTTs as the analog synapses is very

robust to the imperfections in the programming of the array. CTT-based synapses provide virtually

no accuracy degradation in the MNIST case, and an acceptable degradation even in a very large

network.

Figure 4.16 The degradation of the Top 5 and Top 1 accuracy as the variation in the weights
increases.

 79

4.5 Comparison with other analog memory devices

For an analog memory to be successfully used in an inference engine, two properties are of

paramount importance: the analog programmability and the power consumption per multiple-and-

accumulate (MAC) operation. The former determines the inference accuracy and the latter

determines the power efficiency.

The programming accuracy, defined as A(t) = s/R, where t is the time, s is the standard

deviation of the difference between the programmed current and the target current, and R is the

range of the target current, is a good parameter to quantify the analog programmability. The time

dependence of the programming accuracy is a result of the limited analog retention – after

programming, the current changes within a certain period of time, as has been discussed in Sections

2.2.3, 4.2 and 4.3. For individual CTTs, with over-programming to account for the current/VT

recovery after programming, 1.6% programming accuracy can be retained one hour after

programming. For twin-CTT cells in an array, ~ 6% programming accuracy has been demonstrated

18 hours after programming.

There is very limited data reported in the literature about the programming accuracy of other

analog memory devices. Among the existing reports, the best is arguably the embedded flash

(eFlash) [45], where the average programming accuracy of three test chips is 5.5%. However, the

timeframe for this programming accuracy was not discussed, although the current does drift over

long term. The comparison of the programming accuracy between CTTs, eFlash, and two

memristive devices is summarized in Table 4.2.

 80

So far, in terms of power efficiency, there is no fair comparison between an analog memory-

based inference engine and CPU/GPU-based systems. Most analog memory-based engines to date

take digital signals as inputs and are limited to the fully connected network. One reason is that

virtually all datasets are created for the digital AI community. A lot of further research−especially

on the architecture, is necessary to improve the performance and functionality of an analog

inference engine. Therefore, here we only compare the power efficiency between CTT-based and

other analog memory-based inference engines.

The power efficiency of an analog memory-based inference engine depends on many factors.

The core is the memory array, whose power can be estimated using the largest voltage applied to

the device and the resultant current. The peripheral circuitry−including I/O, control, the ADC (if

voltage amplitude carries the information) or integrator and comparator (if pulse-width modulation

scheme is employed) − is also an important power contributor. Since there is no apparent reason

for a CTT-based inference engine to be inferior to others in the peripheral circuitry, especially

considering the fact that CTTs are built-in for any advanced-node technologies, here, we only

compare the power consumption of the array, without considering the periphery.

A figure of merit (FoM) for energy efficiency is the energy consumption per MAC operation.

(J/MAC). Table 4.3 summarizes the comparison between the energy efficiency of CTTs and other

Table 4.2 Summary of the programming accuracy of the CTT, eFlash, and memristor.

Device Programming accuracy
− individual device (%)

Programming
accuracy – array (%) Timeframe Reference

CTT 1.6 ~ 6 1/18 hours This work

eFlash 0.3 − 30 ~ 5.5 N/A [24, 45]
Memristor ~ 1 ~ 5.5 1 s [23]

Memristor
N/A but current can
vary by > 2 times in

one hour
N/A 2 hours [36]

 81

analog memory devices reported in the literature, assuming pulse-width modulation scheme with

8-bit inputs and the shortest pulse of 1 ns.

We have seen that, besides being 100% CMOS-only, logic voltage-compatible, and three-

terminal, CTTs also have desirable properties compared to other analog memory candidates. It has

as good analog programmability as the eFlash, and the lowest power consumption per MAC owing

to its three-terminal nature (such that a very low gate voltage can be applied to reduce the drain

current).

Table 4.3 Summary of the energy efficiency of the CTTs and other analog memory devices.

 CTT Memristor [74] PCM [70] eFlash [45] SONOS [75]
Operating

Voltage (V) ≤ 0.05 1.2 0.2 2.7 0.6−0.8

Current (A) 10−8−10−7 10−6−10−5 10−7−10−6 10−8−10−6 10−7−10−6

J/MAC 10−16−10−15 10−12−10−11 10−14−10−13 10−14−10−13 10−14−10−13

 82

5. Conclusions and Future Prospects

5.1 Conclusions

This dissertation provides a comprehensive study on various aspects of CTT-based

neuromorphic computing. The main motivation is the CMOS-only and manufacturing-ready

nature of the device, which requires no material/process modifications at all in any advanced-node

technologies with HfO2 in the gate dielectric. The three-terminal nature of CTTs also provides an

extra knob for tunability and eliminates the need for a selection device.

First, the CTT is characterized for its characteristics that are critical to neuromorphic

applications. One important property is the analog retention: after programming, the recovery (up-

drifting) of the CTT’s current is larger for lower current levels (higher VT). Also, considering the

substantial variation in the devices, verification mechanism after programming is required to fine-

tune the CTT to a desired current level. Using the approach developed in Chapter 2, very fine

tuning of individual CTTs is demonstrated, with the standard deviation of the difference between

programmed and target currents being only 1.6% of the current range. In addition, two desired

properties, the spike-timing dependent plasticity and the weight-dependent plasticity, are

experimentally demonstrated.

In Chapter 3, two unsupervised learning algorithms − winner-takes-all (WTA) clustering and

temporal correlation detection, are studied using CTTs as the analog synapses. The feasibility of

implementing the two algorithms using CTTs as the analog synapses is evaluated with

experimental data. Both algorithms are experimentally demonstrated with a custom-built CTT

array in GlobalFoundries 22nm fully depleted SOI technology. To the best of our knowledge, the

 83

winner-takes-all clustering network, having 27 hardware synapses, is the largest experimental

demonstration of the algorithm with emerging memory devices.

Finally, the use of CTTs for a dot product engine, a critical component in any neural networks,

is discussed. Array-level fine-tuning of twin-CTT weights is demonstrated, with the standard

deviation of the difference between the programmed and the target currents being ~ 6% of the

weight range, regardless of the half selection issue and thermal disturbance from adjacent cells.

The 6% standard deviation is equivalent to 4-bit precision in a digital system. The operation of the

programmed array as a dot product engine is measured and it is shown that the array becomes more

stable over time. The implications of the imperfect programming in the accuracy of an inference

engine are studied in a two-layer network for MNIST digit recognition and the last fully connected

layer of GoogLeNet for ImageNet challenge. There is virtually no accuracy degradation in the

MNIST case and an acceptable 8.76% error rate increase in the ImageNet case.

In conclusion, it has been shown in this dissertation that, the charge-trap transistor possesses

many desired characteristics to be used as an analog synapse device. Experimental studies

demonstrate the feasibility of using the device for both unsupervised and supervised learning

applications.

5.2 Future prospects

Three major directions of future research are suggested below:

• One important question this dissertation has not discussed is that, how to build an energy-

efficient convolutional neural network using analog memory. The answer to this question is not

necessarily dependent on what analog memory is involved. The analog computing community

has been actively pursuing the answer for a decade, and when there is one, all analog devices can

 84

be put into perspective and evaluated for their pros and cons for a particular application. Clearly

this is an important problem but beyond the scope of this dissertation.

• Although it has been shown that the accuracy degradation of an inference engine due to

the imperfect CTT programming is not devastating in a small-scale fully connected neural

network (up to 4 million synapses), studies need to be done at scale. Specifically, the analog

resiliency of larger and deeper neural networks needs to be investigated, considering the effect of

not only the imperfection of programming, but also the imperfection of peripheral circuits (e.g.

current integrator). This topic has been largely overlooked by the AI community until very

recently [76-78], mainly because most of the networks are run on GPUs and CPUs where the

weight inaccuracy is minimal. Most of the existing approaches to addressing the weight

uncertainty and quantized weights aim at model compression or run-time acceleration [79,

80]. Moving forward, when CTTs are used as analog synapses in a neural network, network-

device co-optimization is anticipated to address this issue [81].

• Towards a very large scale integrated neuromorphic system, the silicon interconnect fabric

(Si-IF) might be necessary to reduce the communication cost between different components of

the system to maintain the energy-efficiency for the scaled-out system. The system architecture

and communication protocols are areas for future investigation.

 85

References

[1] Kelin Kuhn, “High Mobility Materials for CMOS Applications” in “High Mobility Materials

for CMOS Applications,” Elsevier, 2018.

[2] S. S. Iyer, “Heterogeneous Integration for Performance and Scaling,” in IEEE Transactions on

Components, Packaging and Manufacturing Technology, vol. 6, no. 7, pp. 973-982, July 2016.

doi: 10.1109/TCPMT.2015.2511626

[3] Z. Wan and S. S. Iyer, “Three-dimensional wafer scale integration for ultra-large-scale

cognitive systems,” 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified

Conference (S3S), Burlingame, CA, 2017, pp. 1-2. doi: 10.1109/S3S.2017.8309199

[4] A. A. Bajwa et al., “Heterogeneous Integration at Fine Pitch (≤ 10 µm) Using Thermal

Compression Bonding,” 2017 IEEE 67th Electronic Components and Technology Conference

(ECTC), Orlando, FL, 2017, pp. 1276-1284. doi: 10.1109/ECTC.2017.240

[5] D. S. Modha, R. Ananthanarayanan, S. K. Esser, A. Ndirango, A. J. Sherbondy, and R. Singh,

“Cognitive computing,” Commun. ACM, vol. 54, pp. 62–71, Aug. 2011, doi:

10.1145/1978542.1978559

[6] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. Andreopoulos, D.

J. Berg, J. L. McKinstry, T. Melano, D. R. Barch, C. di Nolfo, P. Datta, A. Amir, B. Taba, M. D.

Flickner, and D. S. Modha, “Convolutional networks for fast, energy-efficient neuromorphic

computing,” Proc. Nat. Acad. Sci. USA, vol. 113, pp. 11441–11446, Aug. 2016, doi:

10.1073/pnas.1604850113

[7] S. B. Furber, “Brain-inspired computing,” IET Comput. Digit. Techn., vol. 10, no. 6, pp. 299–

305, Nov. 2016, doi: 10.1049/iet-cdt.2015.0171

 86

[8] A. Calimera, E. Macii, and M. Poncino, “The human brain project and neuromorphic

computing,” Funct. Neurol., vol. 28, pp. 191–196, Jul./Sep. 2013, doi:

10.11138/FNeur/2013.28.3.191

[9] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L.

Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba,

A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking neuron

integrated circuit with a scalable communication network and interface,” Science, vol. 345, pp.

668–673, Aug. 2014, doi: 10.1126/science.1254642

[10] P. Yao, H. Wu, B. Gao, S. B. Eryilmaz, X. Huang, W. Zhang, Q. Zhang, N. Deng, L. Shi, H.-

S. P. Wong, and H. Qian, “Face classification using electronic synapses,” Nature Commun., vol.

8, May 2017, Art. no. 15199, doi: 10.1038/ncomms15199.

[11] R. F. Lyon and C. Mead, “An analog electronic cochlea,” in IEEE Transactions on Acoustics,

Speech, and Signal Processing, vol. 36, no. 7, pp. 1119-1134, July 1988. doi: 10.1109/29.1639

[12] C. Mead, “Neuromorphic electronic systems,” in Proceedings of the IEEE, vol. 78, no. 10,

pp. 1629-1636, Oct. 1990. doi: 10.1109/5.58356

[13] M. A. Mahowald and C. Mead, “The Silicon Retina,” Scientific American. 264 (5): 76–82,

May 1991.

[14] B B. V. Benjamin et al., “Neurogrid: A Mixed-Analog-Digital Multichip System for Large-

Scale Neural Simulations,” in Proceedings of the IEEE, vol. 102, no. 5, pp. 699-716, May 2014.

doi: 10.1109/JPROC.2014.2313565

[15] N. Srinivasa and J. M. Cruz-Albrecht, “Neuromorphic Adaptive Plastic Scalable Electronics:

Analog Learning Systems,” in IEEE Pulse, vol. 3, no. 1, pp. 51-56, Jan. 2012. doi:

10.1109/MPUL.2011.2175639

 87

[16] E. Painkras et al., “SpiNNaker: A multi-core System-on-Chip for massively-parallel neural

net simulation,” Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, San Jose,

CA, 2012, pp. 1-4. doi: 10.1109/CICC.2012.6330636

[17] T. Sharp, F. Galluppi, A. Rast, S. Furber, “Power-efficient simulation of detailed cortical

microcircuits on SpiNNaker,” Journal of Neuroscience Methods, vol. 210, pp. 110–118, 2010.

[18] F. Walter, F. Röhrbein, A. Knoll, “Neuromorphic implementations of neurobiological

learning algorithms for spiking neural networks,” Neural Networks, vol. 72, pp. 152−167, 2015.

[19] D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, “The missing memristor found,”

Nature, vol. 453, pp. 80–83, May 2008.

[20] S. Mandal, A. El-Amin, K. Alexander, B. Rajendran, and R. Jha, “Novel synaptic memory

device for neuromorphic computing,” Sci. Rep., vol. 4, p. 5333, Jun. 2014. doi: 10.1038/srep05333

[21] S. Kim, M. Ishii, S. Lewis, T. Perri, M. BrightSky, W. Kim, R. Jordan, G. W. Burr, N. Sosa,

A. Ray, J.-P. Han, C. Miller, K. Hosokawa, and C. Lam, “NVM neuromorphic core with 64k-cell

(256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-

situ learning,” in IEDM Tech. Dig., Washington, DC, USA, Dec. 2015, pp. 17.1.1–17.1.4, doi:

10.1109/IEDM.2015.7409716

[22] S. B. Eryilmaz, E. Neftci, S. Joshi, S. Kim, M. BrightSky, H.-L. Lung, C. Lam, G.

Cauwenberghs, and H.-S. P. Wong, “Training a probabilistic graphical model with resistive

switching electronic synapses,” IEEE Trans. Electron Devices, vol. 63, no. 12, pp. 5004–5011,

Dec. 2016, doi: 10.1109/TED.2016.2616483

[23] G. C. Adam, B. D. Hoskins, M. Prezioso, F. Merrikh-Bayat, B. Chakrabarti and D. B. Strukov,

“3-D Memristor Crossbars for Analog and Neuromorphic Computing Applications,” in IEEE

Transactions on Electron Devices, vol. 64, no. 1, pp. 312-318, Jan. 2017. doi:

10.1109/TED.2016.2630925

 88

[24] X. Guo, “Mixed Signal Neurocomputing Based on Floating-gate Memories,” UCSB

Dissertation, 2017.

[25] L. Chua, “Memristor-The missing circuit element,” in IEEE Transactions on Circuit Theory,

vol. 18, no. 5, pp. 507-519, September 1971. doi: 10.1109/TCT.1971.1083337

[26] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder and W. Lu, “Nanoscale Memristor

Device as Synapse in Neuromorphic Systems,” Nano Lett. 2010, 10, 1297–1301.

[27] H. -. P. Wong et al., “Metal–Oxide RRAM,” in Proceedings of the IEEE, vol. 100, no. 6, pp.

1951-1970, June 2012. doi: 10.1109/JPROC.2012.2190369

[28] A. Chanthbouala, et al., “A ferroelectric memristor,” Nature Materials, vol. 11, pp. 860−864,

October 2012.

[29] D. Walczyk, Ch. Walczyk, T. Schroeder, T. Bertaud, M. Sowinska, M. Lukosius, M. Fraschke,

B. Tillack, Ch. Wenger, “Resistive switching characteristics of CMOS embedded HfO2-based

1T1R cells,” Microelectronic Engineering vol. 88, pp. 1133–1135, 2011.

[30] Y. Wu et al., “On the Bipolar Resistive Switching Memory Using TiN/Hf/HfO2/Si MIS

Structure,” in IEEE Electron Device Letters, vol. 34, no. 3, pp. 414-416, March 2013. doi:

10.1109/LED.2013.2241726

[31] M.Y. Chan, T. Zhang, V. Ho, P.S. Lee, “Resistive switching effects of HfO2 high-k dielectric,”

Microelectronic Engineering vol. 85, pp. 2420–2424, 2008.

[32] H. Y. Lee et al., “Evidence and solution of over-RESET problem for HfOx based resistive

memory with sub-ns switching speed and high endurance,” 2010 International Electron Devices

Meeting, San Francisco, CA, 2010, pp. 19.7.1-19.7.4. doi: 10.1109/IEDM.2010.5703395

[33] J. J. Yang, D. B. Strukov and D. R. Stewart, “Memristive devices for computing,” Nature

Nanotechnology, vol. 8, pp. 13−24, January 2013.

 89

[34] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang and H.-S.Philip Wong, “Stochastic learning in oxide

binary synaptic device for neuromorphic computing,” Frontiers in Neuroscience, vol. 7, October

2013.

[35] S.G. Hu, Y. Liu, Z. Liu, T.P. Chen, J.J. Wang, Q. Yu, L.J. Deng, Y. Yin and Sumio Hosaka,

“Associative memory realized by a reconfigurable memristive Hopfield neural network,” Nature

Communications, 6:7522, 2015.

[36] S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum and H. -. P. Wong, “An Electronic Synapse Device

Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation,” in IEEE

Transactions on Electron Devices, vol. 58, no. 8, pp. 2729-2737, Aug. 2011. doi:

10.1109/TED.2011.2147791

[37] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson,

B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, R. S. Shenoy, “Phase change

memory technology,” J. Vac. Sci. Technol. B, 28(2) 2010.

[38] H. -. P. Wong et al., “Phase Change Memory,” in Proceedings of the IEEE, vol. 98, no. 12,

pp. 2201-2227, Dec. 2010. doi: 10.1109/JPROC.2010.2070050

[39] S. Park et al., “RRAM-based synapse for neuromorphic system with pattern recognition

function,” 2012 International Electron Devices Meeting, San Francisco, CA, 2012, pp. 10.2.1-

10.2.4. doi: 10.1109/IEDM.2012.6479016

[40] K. Seo, I. Kim, S. Jung, M. Jo, S. Park, J. Park, J. Shin, K. P. Biju, J. Kong and K. Lee,

“Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium

oxide bilayer resistive switching device,” Nanotechnology 22, 254023, 2011.

[41] R. Yang, K. Terabe, G. Liu, T. Tsuruoka, T. Hasegawa, J. K. Gimzewski and M. Aono, “On-

demand nanodevice with electrical and neuromorphic multifunction realized by local ion

migration,” ACS Nano 6, 9515–21, 2012.

 90

[42] D. Kuzum, R. G. D. Jeyasingh, B. Lee and H.-S. P. Wong, “Nanoelectronic Programmable

Synapses Based on Phase Change Materials for Brain-Inspired Computing,” Nano Lett. 2012, 12,

2179–2186.

[43] Y. Zhang, J. Feng, Y. Zhang, Z. Zhang, Y. Lin, T. Tang, B. Cai, and B. Chen, “Multi-bit

storage in reset process of Phase-change Random Access Memory (PRAM),” Phys. Stat. Sol.,

Rapid Res. Lett., vol. 1, no. 1, pp. R28–R30, 2007.

[44] D. Kuzum, S. Yu, and H.-S. P. Wong, “Synaptic electronics: Materials, devices, and

applications,” Nanotechnology, vol. 24, pp. 382001-1–382001-22, Sep. 2013, doi: 10.1088/0957-

4484/24/38/ 382001.

[45] X. Guo et al., “Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic

classifier based on embedded NOR flash memory technology,” 2017 IEEE International Electron

Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 6.5.1-6.5.4. doi:

10.1109/IEDM.2017.8268341

[46] https://www.mythic-ai.com

[47] https://www.syntiant.com

[48] Byoung Hun Lee et al., “Ultrathin hafnium oxide with low leakage and excellent reliability

for alternative gate dielectric application,” International Electron Devices Meeting 1999.

Technical Digest (Cat. No.99CH36318), Washington, DC, USA, 1999, pp. 133-136. doi:

10.1109/IEDM.1999.823863

[49] K. Mistry et al., “A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained

Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging,” 2007

IEEE International Electron Devices Meeting, Washington, DC, 2007, pp. 247-250. doi:

10.1109/IEDM.2007.4418914

 91

[50] E. P. Gusev et al., “Ultrathin high-K gate stacks for advanced CMOS devices,” International

Electron Devices Meeting. Technical Digest (Cat. No.01CH37224), Washington, DC, USA, 2001,

pp. 20.1.1-20.1.4. doi: 10.1109/IEDM.2001.979537

[51] W. J. Zhu, T. P. Ma, S. Zafar and T. Tamagawa, “Charge trapping in ultrathin hafnium oxide,”

in IEEE Electron Device Letters, vol. 23, no. 10, pp. 597-599, Oct. 2002. doi:

10.1109/LED.2002.804029

[52] E.P. Gusev, C. D’Emic, S. Zafar, A. Kumar, “Charge trapping and detrapping in HfO2 high-

j gate stacks,” Microelectronic Engineering 72 (2004) 273–277.

[53] E. Cartier, B. P. Linder, V. Narayanan and V. K. Paruchuri, “Fundamental understanding and

optimization of PBTI in nFETs with SiO2/HfO2 gate stack,” 2006 International Electron Devices

Meeting, San Francisco, CA, 2006, pp. 1-4. doi: 10.1109/IEDM.2006.346773

[54] Kenji Shiraishi, Keisaku Yamada, Kazuyoshi Torii, Yasushi Akasaka, Kiyomi Nakajima,

Mitsuru Konno, Toyohiro Chikyow, Hiroshi Kitajima, Tsunetoshi Arikado, Yasuo Nara,

“Oxygen-vacancy-induced threshold voltage shifts in Hf-related high-k gate stacks,” Thin Solid

Films 508 (2006) 305 – 310.

[55] Y. Liu, A. Shanware, L. Colombo and R. Dutton, “Modeling of charge trapping induced

threshold-voltage instability in high-k gate dielectric FETs,” in IEEE Electron Device Letters, vol.

27, no. 6, pp. 489-491, June 2006. doi: 10.1109/LED.2006.874760

[56] D. Heh, C. D. Young and G. Bersuker, “Experimental Evidence of the Fast and Slow Charge

Trapping/Detrapping Processes in High-k Dielectrics Subjected to PBTI Stress,” in IEEE Electron

Device Letters, vol. 29, no. 2, pp. 180-182, Feb. 2008. doi: 10.1109/LED.2007.914088

[57] F. Khan, E. Cartier, C. Kothandaraman, J. C. Scott, J. C. S. Woo, and S. S. Iyer, “The impact

of self-heating on charge trapping in high-κ-metal-gate nFETs,” IEEE Electron Device Lett., vol.

37, no. 1, pp. 88–91, Jan. 2016, doi: 10.1109/LED.2015.2504952.

 92

[58] F. Khan, E. Cartier, J. C. S. Woo, and S. S. Iyer, “Charge trap transistor (CTT): An embedded

fully logic-compatible multiple-time programmable non-volatile memory element for high-κ-

metal-gate CMOS technologies,” IEEE Electron Device Lett., vol. 38, no. 1, pp. 44–47, Jan. 2017,

doi: 10.1109/LED.2016.2633490.

[59] J. Viraraghavan et al., “80Kb 10ns read cycle logic Embedded High-K charge trap Multi-

Time-Programmable Memory scalable to 14nm FIN with no added process complexity,” 2016

IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, HI, 2016, pp. 1-2. doi:

10.1109/VLSIC.2016.7573462

[60] B. Jayaraman et al., “80-kb Logic Embedded High-K Charge Trap Transistor-Based Multi-

Time-Programmable Memory with No Added Process Complexity,” in IEEE Journal of Solid-

State Circuits, vol. 53, no. 3, pp. 949-960, March 2018. doi: 10.1109/JSSC.2017.2784760

[61] D. A. Dallmann and K. Shenai, “Scaling constraints imposed by self-heating in submicron

SOI MOSFET's,” in IEEE Transactions on Electron Devices, vol. 42, no. 3, pp. 489-496, March

1995. doi: 10.1109/16.368045

[62] O. Russakovsky, et al., “ImageNet Large Scale Visual Recognition Challenge,” IJCV, 2015.

[63] T. Chang, S.-H. Jo and W. Lu, “Short-Term Memory to Long-Term Memory Transition in a

Nanoscale Memristor,” ACS Nano, 5 (9), pp. 7669−7676, 2011.

[64] G.-Q. Bi and M.-M. Poo, “Synaptic modifications in cultured hippocampal neurons:

Dependence on spike timing, synaptic strength, and postsynaptic cell type,” J. Neurosci., vol. 18,

no. 24, pp. 10 464–10 472, Dec. 1998.

[65] X. Gu and S. S. Iyer, “Unsupervised Learning Using Charge-Trap Transistors,” in IEEE

Electron Device Letters, vol. 38, no. 9, pp. 1204-1207, Sept. 2017.

doi: 10.1109/LED.2017.2723319

 93

[66] A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein, and T. Prodromakis, “Unsupervised

learning in probabilistic neural networks with multi-state metal-oxide memristive synapses,”

Nature Commun., vol. 7, Sep. 2016, Art. no. 12611, doi: 10.1038/ncomms12611.

[67] C. Kim et al., “Demonstration of Unsupervised Learning With Spike-Timing-Dependent

Plasticity Using a TFT-Type NOR Flash Memory Array,” in IEEE Transactions on Electron

Devices, vol. 65, no. 5, pp. 1774-1780, May 2018. doi: 10.1109/TED.2018.2817266

[68] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov,

“Training and operation of an integrated neuromorphic network based on metal-oxide memristors,”

Nature, vol. 521, pp. 61–64, May 2015, doi: 10.1038/nature14441.

[69] J. Bill and R. Legenstein, “A compound memristive synapse model for statistical learning

through STDP in spiking neural networks,” Front. Neurosci., Dec. 2014, 8:412.

[70] Sebastian et al., “Temporal correlation detection using computational phase-change memory,”

Nat. Comm., 1115 (2017).

[71] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. di Nolfo, S. Sidler, M.

Giordano, M. Bodini, N. C. P. Farinha, B. Killeen, C. Cheng, Y. Jaoudi and G. W. Burr,

“Equivalent-accuracy accelerated neural network training using analogue memory,” Nature 558,

60 (2018).

[72] Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit,” in

Proceedings of ISCA ’17, Toronto, ON, Canada, June 24-28, 2017, 12 pages.

[73] Szegedy et al., “Going deeper with convolutions,” arXiv:1409.4842, 2014.

[74] Y. Kim, Y. Zhang and P. Li. “A reconfigurable digital neuromorphic processor with

memristive synaptic crossbar for cognitive computing,” ACM J. Emerg. Technol. Comput. Syst.

11, 4, Article 38 (April 2015), 25 pages. doi: http://dx.doi.org/10.1145/2700234

 94

[75] L. Fick, D. Blaauw, D. Sylvester, S. Skrzyniarz, M. Parikh and D. Fick, “Analog in-memory

subthreshold deep neural network accelerator,” 2017 IEEE Custom Integrated Circuits

Conference (CICC), Austin, TX, 2017, pp. 1-4. doi: 10.1109/CICC.2017.7993629

[76] Reagen, Brandon, et al., "Ares: A framework for quantifying the resilience of deep neural

networks." 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018.

[77] Marco Donato et al., “On-Chip Deep Neural Network Storage with Multi-Level eNVM,” In

DAC ’18: DAC ’18:The 55th Annual Design Automation Conference 2018, June 24–29, 2018,

San Francisco, CA, USA.

[78] I. V. Isaev and S. A. Dolenko, “Training with noise as a method to increase noise resilience

of neural network solution of inverse problems,” Opt. Mem. Neural Networks (2016) 25: 142.

[79] C. Blundell, J. Cornebise, K. Kavukcuoglu and D. Wierstra, “Weight Uncertainty in Neural

Networks,” Proceedings of the 32nd International Conference on Machine Learning. Lille, France,

2015.

[80] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv and Y. Bengio, “Quantized Neural

Networks: Training Neural Networks with Low Precision Weights and Activations,” Journal of

Machine Learning Research 18 (2018) 1-30.

[81] Private discussions with Prof. Iyer, Prof. Roychowdhury, and Zhe Wan.

