THE WORKLOADS OF THE FUTURE REQUIRE INCREDIBLE AMOUNTS OF COMPUTE POWER

HIGH PERFORMANCE COMPUTING

CLOUD, HYPERSCALE & VIRTUALIZATION

MACHINE INTELLIGENCE

BIG DATA ANALYTICS

IMMERSIVE & INSTINCTIVE COMPUTING

SOFTWARE-DEFINED STORAGE
GPU AND CPU PERFORMANCE TRENDS

GPU Single Precision Floating Point Operations Per Second Trend

Specint®_rate2006 2P Server Performance Trend Over Time

CONSISTENT AND EXPONENTIAL CPU/GPU PERFORMANCE GAINS
PROCESS TECHNOLOGY DELIVERED SIGNIFICANT GAINS

Technology Energy Efficiency and Density Across Process Nodes

2x ENERGY EFFICIENCY EVERY 3.6 YEARS
2x DENSITY EVERY 3 YEARS

SIGNIFICANT PART OF ENERGY EFFICIENCY DERIVES FROM MOORE'S LAW
PERFORMANCE GAINS OVER THE PAST DECADE

- Integration of System Components
- Micro-Architectural Efficiency
- Power Management
- Software
- More Silicon Power
- Bigger Die

HIGHER PERFORMANCE, DENSER, LOWER POWER TRANSISTORS

ELEMENTS OF 2x IN 2.5 YEAR PERFORMANCE GAIN OVER THE PAST DECADE

- Process Technology 40%
- Additional TDP 8%
- Additional Die Size 12%
- Microarchitecture 17%
- Power Management 15%
- Compilers 8%
BARRIERS TO CONTINUED PERFORMANCE IMPROVEMENT
MOORE’S LAW KEEPS SLOWING
WHILE COSTS CONTINUE TO INCREASE

Cost Per Yielded mm² for a 250mm² Die

INCREASING DIE SIZES ARE ECONOMICALLY PROBLEMATIC
DIE SIZE TREND

Die Size Increases Over Time in Server CPUs and GPUs

DIE SIZES INCREASING AT AN UNSUSTAINABLE RATE
CHIPLET ARCHITECTURES TO EXTEND PERFORMANCE GAINS
BIGGER CHIPS TO OFFSET TECHNOLOGY SLOWDOWN

- If technology scaling only gives you (say) 1.5x more devices per 24 months, why not just make chips 1.33x bigger to get 2x transistors?

![Diagram showing chip yield comparison]

395 chips ➔ 362 good die (8% yield loss)

192 chips ➔ 162 good die (16% yield loss)

(hypothetical/academic example [1], not real yield rates)

CHIPLETS BACKGROUND

- Alternative: build multiple smaller chips

- Historically not needed for most markets
 - Except for the largest systems, Moore’s Law was sufficient to meet compute needs

- Chiplets not free
 - Additional area for interfaces, replicated logic
 - Higher packaging costs
 - Additional design effort, complexity
 - Past methodologies less suited for chiplets

One generation later
2X device functionality costs > 2X silicon area
The concept of partitioning systems into multiple chips is not new.

Evolution of packaging technology has changed the trade-offs in terms of cost, bandwidth, latency, energy, etc.

End of Moore’s Law
+ Advanced Packaging Advancements
→ New era for multi-chip/chiplet approaches
HIGH-LEVEL APPROACH TO CHIPLETs

Wafer → Test → Assemble

Many More Functional SoCs
1st Generation Chiplet Design

Up to 32 Cores per Package

AMD EPYC 2017
Multichip Module

- Die Size > Reticle Limit
- Increased Peak Compute
- Highly Configurable
- Manufacturing Cost Reduced 41% vs. Monolithic
1ST GENERATION EPYC DETAILS

Per Chip
- Eight Zen cores
- 2 DDR4 memory channels
- Infinity Fabric interconnect to other chips

Per Socket
- 32 Zen cores
- 128 Lanes
- High speed I/O
- 8 DIMMs
- 4 Memory Channels
2nd Generation
Chiplet Design

Up to 64 Cores Per Package

AMD EPYC 2019
MultiChip Module

- Significantly More Compute in Same Package
- I/O and CCD in Optimal Process Technologies
- Even Greater Configurability
- Optimized Memory Access
2ND GENERATION EPYC DETAILS

- Per 7nm Core-Cache Die (CCD)
 - Eight Zen cores
 - Infinity Fabric interconnect to IOD

- 12nm I/O Die (IOD)
 - 8 DDR4 memory channels
 - 128 lanes PCIe
 - Infinity Fabric interconnect between cores, memory, IO

Per Socket
- Up to 64 cores
- 8 DDR4 memory channels
- Infinity Fabric interconnect to other sockets
REVOLUTIONARY CHIPLET DESIGN

Each IP in its Optimal Technology

Infinity Fabric™ Enables Modularity (MCM), Scaling (CCD Count)

Optimized I/O Die enables Common Latency to All Cores/Caches

CCD: 8.34 Billion FETs, 74 mm²

Server I/O Die
8.32 Billion FETs, 416 mm²

Client I/O Die
2.09 Billion FETs, 125 mm²

2nd-Gen EPYC

Ryzen 3000-Series

X570 Chipset
CHIPLET RESEARCH AREAS
DESIGN FOR REUSE AND FLEXIBILITY

- **Generality vs. Optimization**
 - Interface widths and speeds, supported functionality/protocol(s), fixed pinouts
 - Memory options (e.g., not all systems need HBM)
 - Form factor/chiplet size (hard to support too many sizes, unnecessarily large silicon increases costs)
 - Power delivery: pinouts, supported voltage(s), voltage regulation, current draw, required decap
 - Thermal budgeting/allowance, cooling solutions

- **Design for reuse in large-scale design**
 - How to leverage wafer-scale systems across smaller scales?
DESIGN FOR “RA” (=RA×)

- Highly-integrated solutions may present serviceability challenges

- Potential replacement cost increases with scale of integration

Stacked DRAM + Processor: $$$$
ARCHITECTURAL PARTITIONING

- Decomposition for a system
- Multi-objective technology selection and optimization
 - Decomposition for N arbitrary, undesigned, unimagined systems
 - Interfaces:
 - Datapath interfaces: physical, protocol
 - Control interfaces: power management, debug, profiling, security, system alerts (e.g., thermal emergency)
MEMORY CONSIDERATIONS IN PARTITIONED ARCHITECTURES

- Memory consistency models, coherency, virtual memory
SECURITY, UNTRUSTED CHIPLETS, ETC.

- OoS, Security: DOS (accidental, malicious), snooping, side channels
CHIPLETS ARE CHANGING HOW WE DESIGN

Fighting Moore’s Law | Silicon Reuse | Product Flexibility | Process Optimization | Architecture Innovation
DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED "AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE, IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREOF, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Vega, Polaris, and Zen are codenames for AMD architectures and are not product names.

ATTRIBUTION

© 2019 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, EPYC, Ryzen, Radeon, and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions.

Microsoft and DirectX are registered trademarks of Microsoft Corporation in the US and other jurisdictions. Xbox is a registered trademark of Microsoft Corporation.

"PlayStation", the “PS” Family logo, and “PSP” are registered trademarks of Sony Interactive Entertainment Inc.

Other names are for informational purposes only and may be trademarks of their respective owners.