Building a Wafer-Scale Deep
Learning Chip: Lessons Learned

Cerebras Systems



Largest Chip Ever Built

* 46,225 mm? silicon

1.2 trillion transistors
400,000 Al optimized cores
18 Gigabytes of On-chip Memory

9 PByte/s memory bandwidth
100 Pbit/s fabric bandwidth
TSMC 16nm process
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Deep Learning: The Most Important Computational
Workload of Our Time

* Proliferating across industries and applications
e Large and growing portion of workload in datacenter
* Between 2012 and 2018 this workload grew 300,000x

This is a hard problem!
Size: Peta-exa scale compute for each problem, and growing
Shape: A mixture of both heavy parallel and serial computation

Legacy architectures use brute force parallelism that limit scaling up and out
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The Cerebras Architecture is Optimized for DL Compute

Core optimized for neural network primitives

Flexible, programmable core: NN architectures are evolving

Designed for sparse compute: workloads contain fine-grained sparsity

Local memory: weights & activations are local with low data reuse

Fast interconnect: layer-to-layer with high bandwidth and low latency
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Flexible Cores Optimized for Tensor Operations

Key to supporting rapidly evolving NN architectures

* Fully programmable compute core
Fabric Switch
-

Datafiow Triggor"
Data " "Control
’ -1 .

* Full array of general instructions with ML extensions

* Flexible general ops for control processing
* e.g. arithmetic, logical, load/store, branch

e Optimized tensor ops for data processing
e Tensors as first class operands
e e.g. . fmac [z] = [z], [w], a
3D 3D 2D  scalar
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ine for Neural Networks

Sparse Compute Eng

NN operations like nonlinearities naturally create
* Triggered by data

fine-grained sparsity
* Dataflow scheduling in hardware

* Filters out sparse data

e Skips unnecessary processing
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Traditional Memory Architectures not Optimized for DL

In neural networks, weights and activations are local, with low reuse

Traditional memory designs are punished

I PVe\\
* Central shared memory is slow & far away "B //////’
| e [ 1 |
* Requires high data reuse (caching) it B

 Fundamental operation (matrix*vector)

Memory separate from cores
has low data reuse

W Core /" Memory

@erebras



A Memory Architecture that is Optimized for DL

In neural networks, weights and activations are local, with low data reuse
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All memory is fully distributed along with
compute datapaths

Datapath has full performance
from memory
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Memory uniformly distributed across cores
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High-Bandwidth Low-Latency Interconnect

Low latency intra/inter-layer local connectivity with
high bandwidth

Fast and fully configurable fabric

Small single-word messages

All HW-based communication avoids SW overhead

2D mesh topology effective for local communication

* High bandwidth and low latency for local
communication

* Higher utilization and efficiency than global topologies
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Achieving Radical Performance Gains

Training neural networks requires more compute than can fit on a single die

* More Al optimized cores
* More high speed on chip memory

* More fabric bandwidth at low latency connecting cores together
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The Challenges Of Wafer Scale

Building a 46,225 mm?, 1.2 Trillion Transistor Chip

Challenges include:

* Cross-die connectivity
* Yield

* Thermal expansion

* Package assembly

* Power and cooling
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Challenge 1: Cross Die Connectivity

e Standard fabrication process requires
die to be independent

* Scribe line separates each die

e Scribe line used as mechanical barrier

for die cutting and for test structures
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Cross-Die Wires

BN

 Add wires across scribe line in

partnership with TSMC

* Extend 2D mesh across die |.|.|
* Same connectivity between cores and T O ""' """""
across scribe lines create a R T WA T
homogenous array R LD ]
* Short wires enable ultra high | | |
bandwidth with low latency =\ [ O T
y L
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Die

Challenge 2: Yield

Impossible to yield full wafer with zero defects

* Silicon and process defects are inevitable even
in mature process

Defects
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Redundancy is Your Friend

No Defects Defect

* Uniform small core architecture |
enables redundancy to address yield — - |/
at very low cost
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Hardware remaps and reconnects using extra links

Core Extra core @ Defective core
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Challenge 3: Thermal Expansion in the Package

e Silicon and PCB expand at different
rates under temp

* Size of wafer would result in too much
mechanical stress using traditional
package technology

EXPANSION

Main PCB Board
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Connecting Wafer to PCB

* Developed custom connector to
connect wafer to PCB

e Connector absorbs the variation while " 8
maintaining connectivity ] AT VLA LLND

EXPANSION

Main PCB Board
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Challenge 4: Package Assembly

 PCB

* Connector
* Wafer

* Cold plate

* All components require precise
alignment

* No traditional package exists
* Package includes:

Main PCB Board
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Custom Packaging Tools

* Developed custom machines and
process

* Tools to ensure precision alignment

* Tools for special handling

Cold Plate

Silicon

Die Reticle

Main PCB Board
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Challenge 5: Power and Cooling

Concentrated high density exceeds
traditional power & cooling capabilities

AIR FLOW

“as

* Power delivery
e Current density too high for power Silicon
plane distribution in PCB

* Heat removal
* Heat density too high for direct air

cooli nNg CURRENT FLOW CURRENT FLOW

Main PCB Board
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Using the 3™ Dimension

* Power delivery

e Current flow distributed in 3rd dimension
perpendicular to wafer
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Cold Plate

* Heat removal \ Silicon

Die Reticle Die Reticie Die Reticle Die Reticle

* Water carries heat from wafer through
cold plate W | | | LLaaBFt [ {renaattir] |

Main PCB Board

CURRENT FLOW CURRENT FLOW
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Building a Wafer-Scale Deep Learning Chip:
Ingredients of a Successful Recipe

 Many Cores: large number of small cores

* Bonus! Redundancy for in system hardware repairs

* Local Memory: model weights & activations are local
Externabmemory is too slow
* All on-chip memory, reduces need for-external interconnect, requires fewer pins
* Fast On-Chip Fabric: high bandwidth and low latency
ff-chip communication

* Sub-um-lines across scribe to achieve 100 Petabit/s — on-die speeds at wafer scale
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Building a Wafer-Scale Deep Learning Chip:
Inventions Required

* Thermal Expansion
* Traditional chip-on-substrate hierarchies do not scale

* Used special connector that can absorb expansion

* Package Assembly
* Traditional package assembly technologies'do not work atwwafer scale

* Invented entirely new tools.to assemble the pieces together

* Power Delivery
* High density precludes traditional POL converter designs and power distribution

* Novel power delivery scheme through the PCB using 3rd dimension

* Cooling

* High density precludes traditional forced-air cooling solutions
@erebras e Special cold plate with water channels using 3rd dimension












Legacy Technologies: Brute Force Parallelism

Fine-grained
* Dense vector processors (e.g. GPUs)
e Limited when compute not large uniform blocks

Coarse-grained
e Scale out clustering (e.g. PCle, Ethernet, IB, NVLink)
* Run multiple instances of the same model (data parallel)
* Limited by inherent serial nature of problem

v I PIN 1 H ’ ‘
scaling is limited and c
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Specialized Accelerators are the Answer

* Signal processing: DSP - -{E)S(%S{UMENTS
* Packet processing: Switches BnoAl’:com.
Y -

e Graphics:GPUY <ANVIDIA.

Neural Network Processing: ? ? ?
| H N
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Programming the Wafer Scale Engine

Neural network models expressed in common ML frameworks

e Cerebras interface to framework extracts the neural network

Performs placement and routing to map neural network layers to fabric

The entire wafer operates on the single neural network

TensorFlow w
O PyTorch
@erebras
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