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Largest Chip Ever Built

• 46,225 mm2 silicon
• 1.2 trillion transistors
• 400,000 AI optimized cores
• 18 Gigabytes of On-chip Memory
• 9 PByte/s memory bandwidth
• 100 Pbit/s fabric bandwidth
• TSMC 16nm process



Cerebras Wafer Scale Engine



Deep Learning: The Most Important Computational 
Workload of Our Time

• Proliferating across industries and applications
• Large and growing portion of workload in datacenter
• Between 2012 and 2018 this workload grew 300,000x

This is a hard problem!
Size: Peta-exa scale compute for each problem, and growing
Shape: A mixture of both heavy parallel and serial computation

Legacy architectures use brute force parallelism that limit scaling up and out
à We need specialized accelerators



The Cerebras Architecture is Optimized for DL Compute

• Core optimized for neural network primitives

• Flexible, programmable core: NN architectures are evolving
• Designed for sparse compute: workloads contain fine-grained sparsity
• Local memory: weights & activations are local with low data reuse
• Fast interconnect: layer-to-layer with high bandwidth and low latency



Flexible Cores Optimized for Tensor Operations

Key to supporting rapidly evolving NN architectures

• Fully programmable compute core

• Full array of general instructions with ML extensions
• Flexible general ops for control processing

• e.g. arithmetic, logical, load/store, branch

• Optimized tensor ops for data processing
• Tensors as first class operands
• e.g. fmac [z] = [z], [w], a

3D 3D 2D scalar



Sparse Compute Engine for Neural Networks

NN operations like nonlinearities naturally create 
fine-grained sparsity

• Dataflow scheduling in hardware
• Triggered by data
• Filters out sparse data
• Skips unnecessary processing

Dense Network Sparse Network

ReLU



Traditional Memory Architectures not Optimized for DL

In neural networks, weights and activations are local, with low reuse

Traditional memory designs are punished

• Central shared memory is slow & far away
• Requires high data reuse (caching)
• Fundamental operation (matrix*vector) 

has low data reuse



A Memory Architecture that is Optimized for DL

In neural networks, weights and activations are local, with low data reuse

The right answer is distributed, 
high performance, on-chip memory

• All memory is fully distributed along with 
compute datapaths

• Datapath has full performance 
from memory



High-Bandwidth Low-Latency Interconnect

Low latency intra/inter-layer local connectivity with 
high bandwidth

• Fast and fully configurable fabric
• Small single-word messages

• All HW-based communication avoids SW overhead
• 2D mesh topology effective for local communication

• High bandwidth and low latency for local 
communication

• Higher utilization and efficiency than global topologies



Achieving Radical Performance Gains

Training neural networks requires more compute than can fit on a single die

• More AI optimized cores
• More high speed on chip memory
• More fabric bandwidth at low latency connecting cores together





Build Big Chips

Big Chips Process Data More Quickly-> Producing Answers In Less Time

• Cluster scale performance on a single chip
• GB of fast memory 1 clock cycle from core
• On-chip interconnect orders of magnitude faster than off-chip
• Model-parallel, linear performance scaling
• Training at scale, with any batch size, at full utilization
• Vastly lower power & less space



The Challenges Of Wafer Scale

Building a 46,225 mm2, 1.2 Trillion Transistor Chip

Challenges include:
• Cross-die connectivity
• Yield
• Thermal expansion
• Package assembly
• Power and cooling



Challenge 1: Cross Die Connectivity

• Standard fabrication process requires 
die to be independent
• Scribe line separates each die
• Scribe line used as mechanical barrier 

for die cutting and for test structures



Cross-Die Wires

• Add wires across scribe line in 
partnership with TSMC
• Extend 2D mesh across die
• Same connectivity between cores and 

across scribe lines create a 
homogenous array
• Short wires enable ultra high 

bandwidth with low latency



Challenge 2: Yield

Impossible to yield full wafer with zero defects

• Silicon and process defects are inevitable even 
in mature process

Defects

Die



Redundancy is Your Friend

• Uniform small core architecture 
enables redundancy to address yield 
at very low cost
• Design includes redundant cores and 

redundant fabric links
• Redundant cores replace defective 

cores
• Extra links reconnect fabric to restore 

logical 2D mesh



Challenge 3: Thermal Expansion in the Package

• Silicon and PCB expand at different 
rates under temp
• Size of wafer would result in too much 

mechanical stress using traditional 
package technology



Connecting Wafer to PCB

• Developed custom connector to 
connect wafer to PCB
• Connector absorbs the variation while 

maintaining connectivity



Challenge 4: Package Assembly

• No traditional package exists
• Package includes:

• PCB
• Connector
• Wafer
• Cold plate

• All components require precise 
alignment



Custom Packaging Tools

• Developed custom machines and 
process
• Tools to ensure precision alignment
• Tools for special handling



Challenge 5: Power and Cooling

Concentrated high density exceeds 
traditional power & cooling capabilities

• Power delivery
• Current density too high for power 

plane distribution in PCB

• Heat removal
• Heat density too high for direct air 

cooling



Using the 3rd Dimension

• Power delivery
• Current flow distributed in 3rd dimension 

perpendicular to wafer

• Heat removal
• Water carries heat from wafer through 

cold plate



Building a Wafer-Scale Deep Learning Chip:  
Ingredients of a Successful Recipe

• Many Cores: large number of small cores
• Large cores are too slow

• Bonus! Redundancy for in system hardware repairs

• Local Memory: model weights & activations are local
• External memory is too slow

• All on-chip memory, reduces need for external interconnect, requires fewer pins

• Fast On-Chip Fabric: high bandwidth and low latency
• Off-chip communication is too slow

• Sub-µm lines across scribe to achieve 100 Petabit/s – on-die speeds at wafer scale



Building a Wafer-Scale Deep Learning Chip:  
Inventions Required

• Thermal Expansion
• Traditional chip-on-substrate hierarchies do not scale
• Used special connector that can absorb expansion

• Package Assembly 
• Traditional package assembly technologies do not work at wafer scale
• Invented entirely new tools to assemble the pieces together

• Power Delivery
• High density precludes traditional POL converter designs and power distribution
• Novel power delivery scheme through the PCB using 3rd dimension

• Cooling 
• High density precludes traditional forced-air cooling solutions
• Special cold plate with water channels using 3rd dimension





It’s working,
running customer workloads.

Stay tuned…





Legacy Technologies: Brute Force Parallelism 

Fine-grained
• Dense vector processors (e.g. GPUs)
• Limited when compute not large uniform blocks

Coarse-grained
• Scale out clustering (e.g. PCIe, Ethernet, IB, NVLink)
• Run multiple instances of the same model (data parallel)
• Limited by inherent serial nature of problem

Result: scaling is limited and costly



Specialized Accelerators are the Answer

• Signal processing: DSP

• Packet processing: Switches

• Graphics: GPU

Neural Network Processing: ???



Programming the Wafer Scale Engine

• Neural network models expressed in common ML frameworks
• Cerebras interface to framework extracts the neural network
• Performs placement and routing to map neural network layers to fabric
• The entire wafer operates on the single neural network


