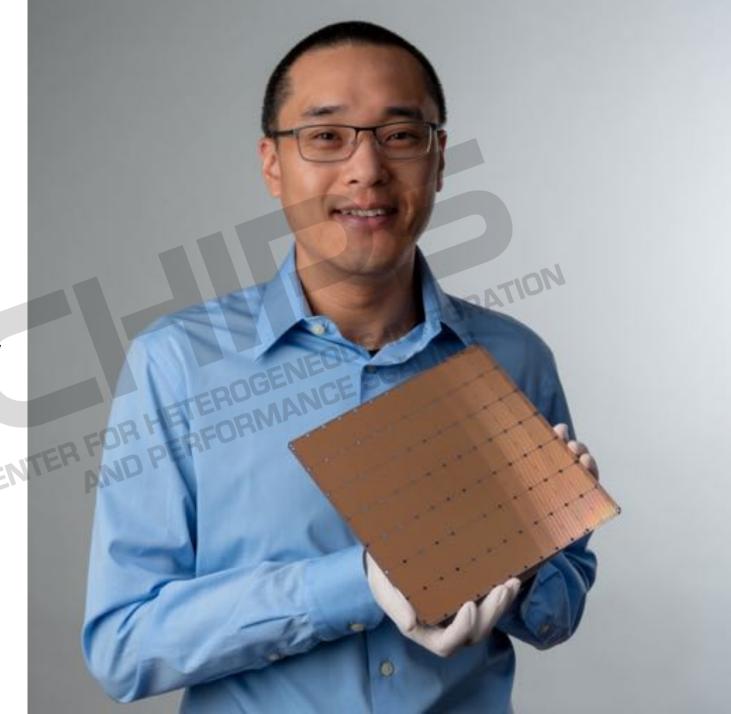
Building a Wafer-Scale Deep Learning Chip: Lessons Learned

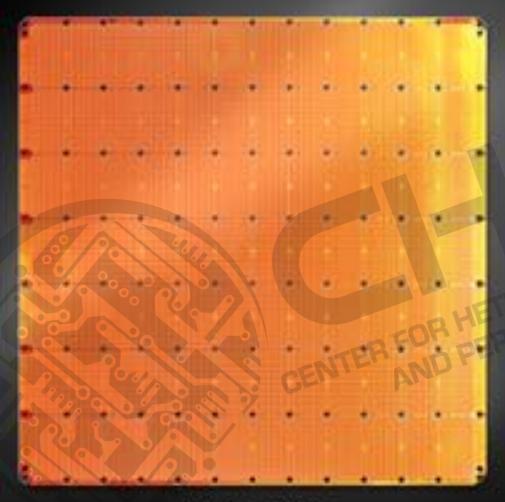
Cerebras Systems

Largest Chip Ever Built

- 46,225 mm² silicon
- 1.2 trillion transistors
- 400,000 AI optimized cores
- 18 Gigabytes of On-chip Memory
- 9 PByte/s memory bandwidth
- 100 Pbit/s fabric bandwidth
- TSMC 16nm process



Cerebras Wafer Scale Engine



Cerebras WSE

1.2 Trillion Transistors 46,225 mm² Silicon

Largest GPU

21.1 Billion Transistors 815 mm² Silicon

Deep Learning: The Most Important Computational Workload of Our Time

- Proliferating across industries and applications
- Large and growing portion of workload in datacenter
- Between 2012 and 2018 this workload grew 300,000x

This is a **hard problem!**

Size: Peta-exa scale compute for each problem, and growing

Shape: A mixture of both heavy parallel and serial computation

Legacy architectures use brute force parallelism that limit scaling up and out

→ We need specialized accelerators

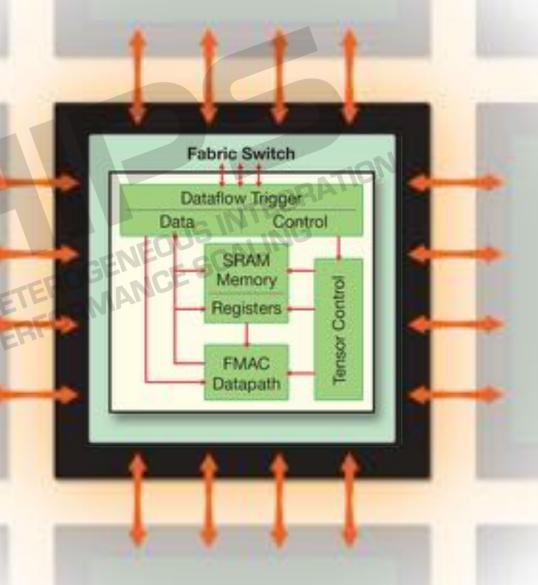
The Cerebras Architecture is Optimized for DL Compute

- Core optimized for neural network primitives
- Flexible, programmable core: NN architectures are evolving
- Designed for sparse compute: workloads contain fine-grained sparsity
- Local memory: weights & activations are local with low data reuse
- Fast interconnect: layer-to-layer with high bandwidth and low latency

Flexible Cores Optimized for Tensor Operations

Key to supporting rapidly evolving NN architectures

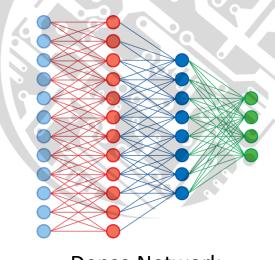
- Fully programmable compute core
- Full array of general instructions with ML extensions
- Flexible general ops for control processing
 - e.g. arithmetic, logical, load/store, branch
- Optimized tensor ops for data processing
 - Tensors as first class operands
 - e.g. fmac [z] = [z], [w], a
 3D 3D 2D scalar

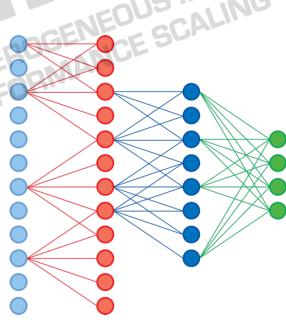


Sparse Compute Engine for Neural Networks

NN operations like nonlinearities naturally create fine-grained sparsity

- Dataflow scheduling in hardware
 - Triggered by data
 - Filters out sparse data
 - Skips unnecessary processing





Dense Network

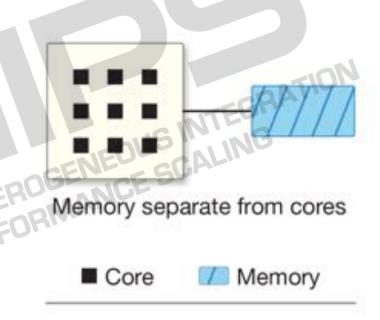
Sparse Network

Traditional Memory Architectures <u>not</u> Optimized for DL

In neural networks, weights and activations are local, with low reuse

Traditional memory designs are punished

- Central shared memory is slow & far away
- Requires high data reuse (caching)
- Fundamental operation (matrix*vector) has low data reuse

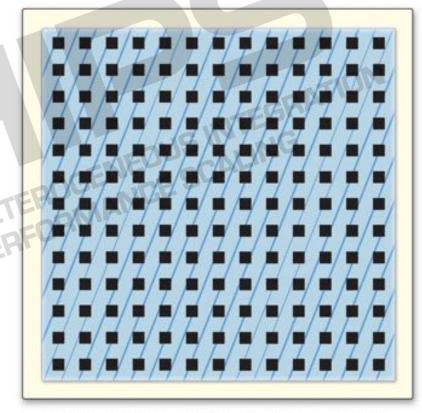


A Memory Architecture that <u>is</u> Optimized for DL

In neural networks, weights and activations are local, with low data reuse

The right answer is distributed, high performance, on-chip memory

- All memory is fully distributed along with compute datapaths
- Datapath has full performance from memory

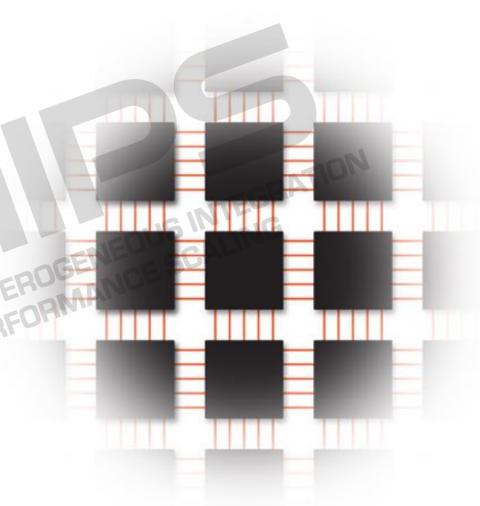


Memory uniformly distributed across cores

High-Bandwidth Low-Latency Interconnect

Low latency intra/inter-layer local connectivity with high bandwidth

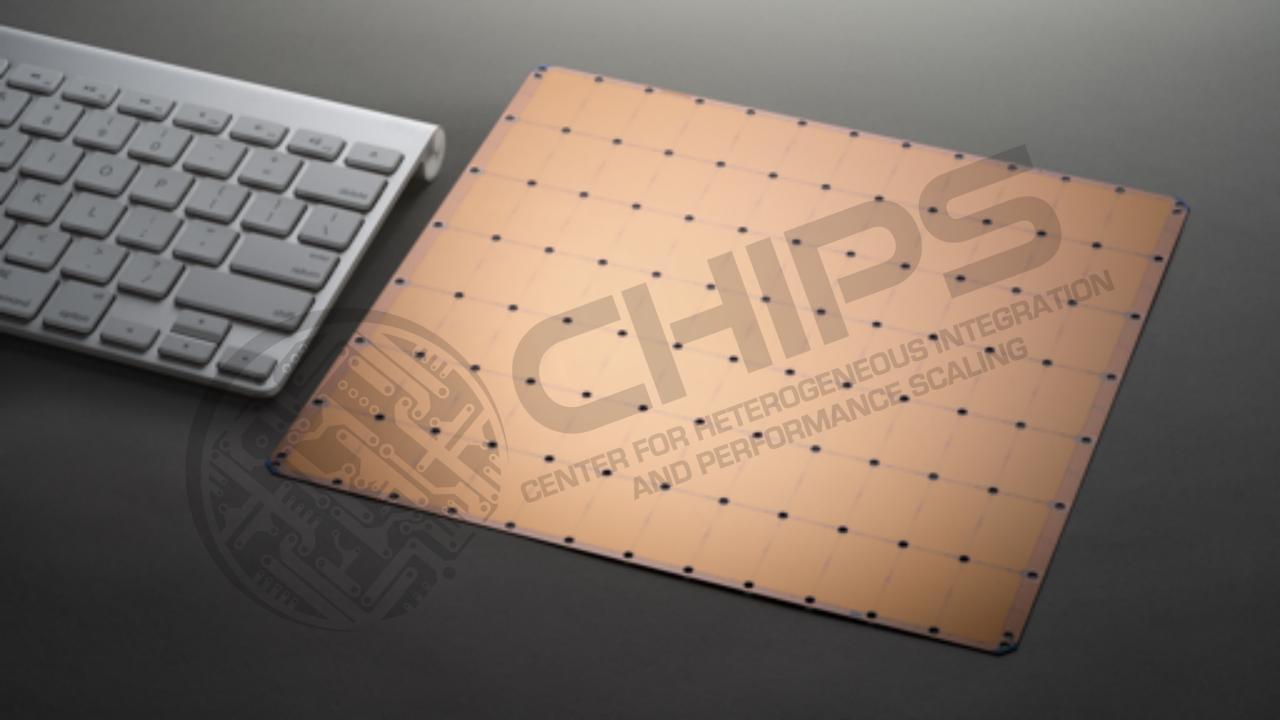
- Fast and fully configurable fabric
- Small single-word messages
- All HW-based communication avoids SW overhead
- 2D mesh topology effective for local communication
 - High bandwidth and low latency for local communication
 - · Higher utilization and efficiency than global topologies



Achieving Radical Performance Gains

Training neural networks requires more compute than can fit on a single die

- More Al optimized cores
- More high speed on chip memory
- More fabric bandwidth at low latency connecting cores together



Build Big Chips

Big Chips Process Data More Quickly-> Producing Answers In Less Time

- Cluster scale performance on a single chip
- GB of fast memory 1 clock cycle from core
- On-chip interconnect orders of magnitude faster than off-chip.
- Model-parallel, linear performance scaling
- Training at scale, with any batch size, at full utilization
- Vastly lower power & less space

The Challenges Of Wafer Scale

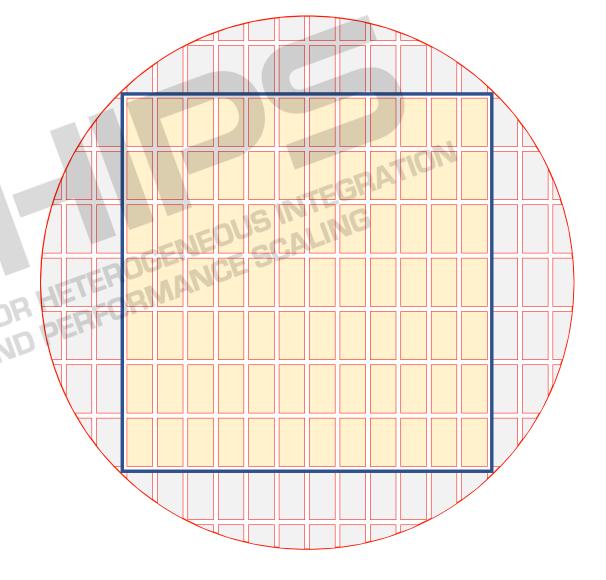
Building a 46,225 mm², 1.2 Trillion Transistor Chip

Challenges include:

- Cross-die connectivity
- Yield
- Thermal expansion
- Package assembly
- Power and cooling

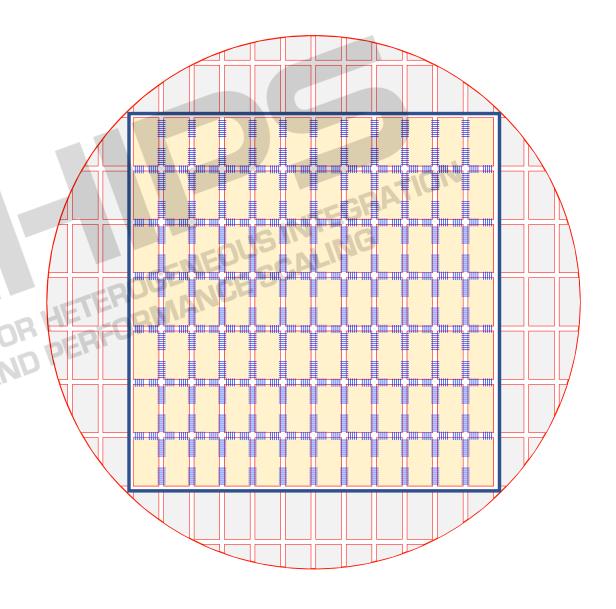
Challenge 1: Cross Die Connectivity

- Standard fabrication process requires die to be independent
- Scribe line separates each die
- Scribe line used as mechanical barrier for die cutting and for test structures



Cross-Die Wires

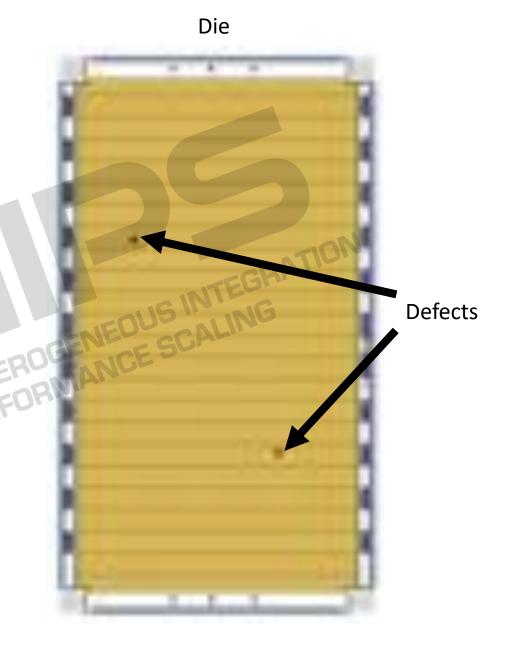
- Add wires across scribe line in partnership with TSMC
- Extend 2D mesh across die
- Same connectivity between cores and across scribe lines create a homogenous array
- Short wires enable ultra high bandwidth with low latency



Challenge 2: Yield

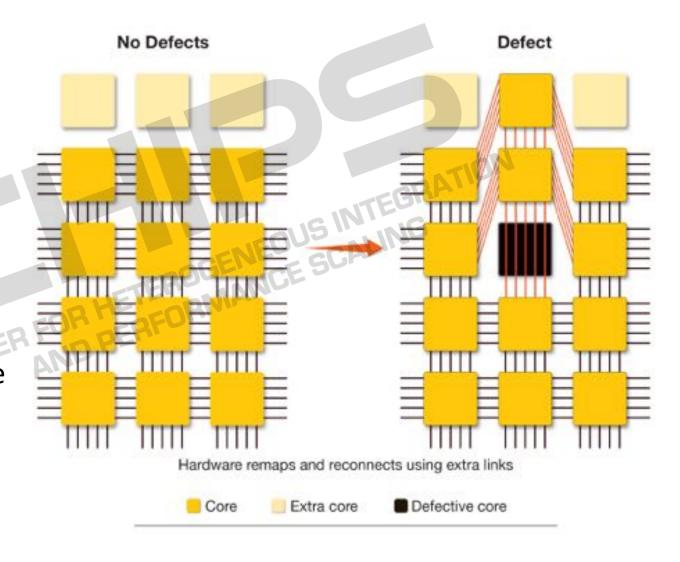
Impossible to yield full wafer with zero defects

Silicon and process defects are inevitable even in mature process



Redundancy is Your Friend

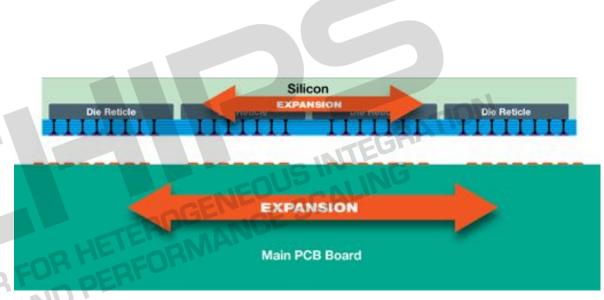
- Uniform small core architecture enables redundancy to address yield at very low cost
- Design includes redundant cores and redundant fabric links
- Redundant cores replace defective cores
- Extra links reconnect fabric to restore logical 2D mesh



Challenge 3: Thermal Expansion in the Package

 Silicon and PCB expand at different rates under temp

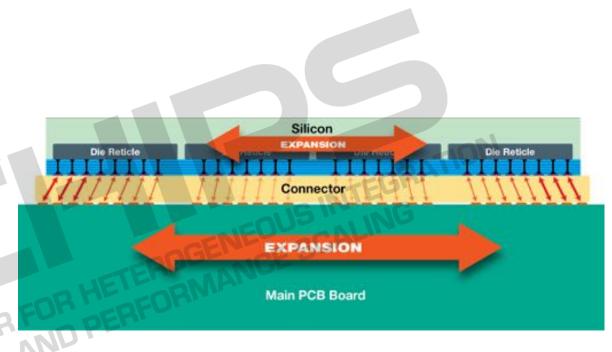
 Size of wafer would result in too much mechanical stress using traditional package technology



Connecting Wafer to PCB

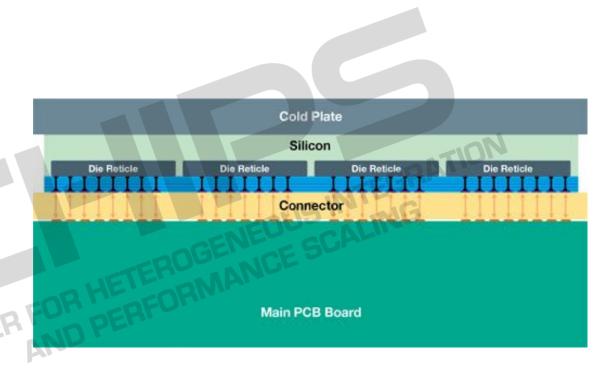
 Developed custom connector to connect wafer to PCB

Connector absorbs the variation while maintaining connectivity



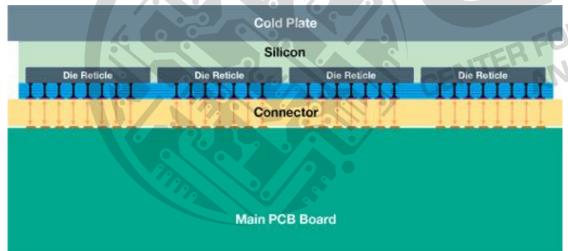
Challenge 4: Package Assembly

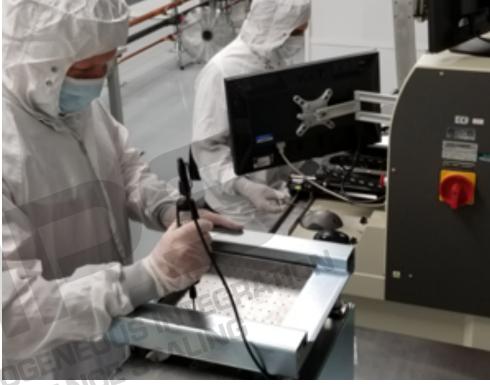
- No traditional package exists
- Package includes:
 - PCB
 - Connector
 - Wafer
 - Cold plate
- All components require precise alignment

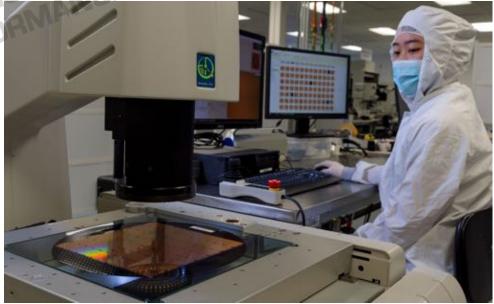


Custom Packaging Tools

- Developed custom machines and process
- Tools to ensure precision alignment
- Tools for special handling



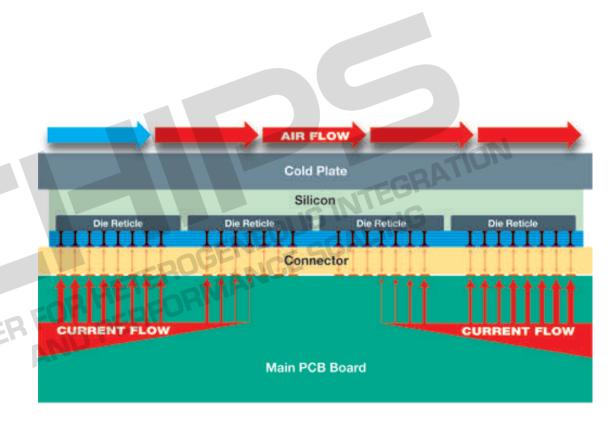




Challenge 5: Power and Cooling

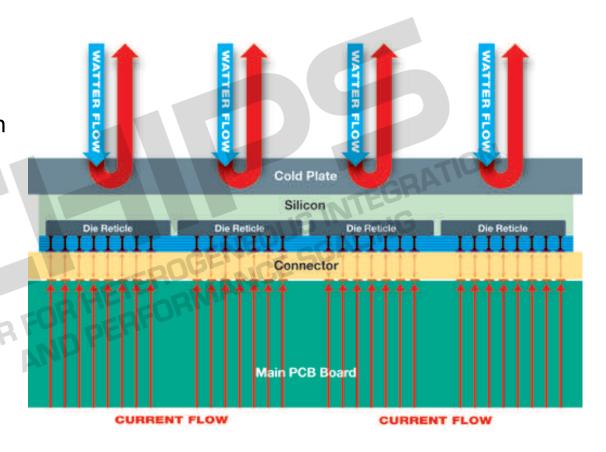
Concentrated high density exceeds traditional power & cooling capabilities

- Power delivery
 - Current density too high for power plane distribution in PCB
- Heat removal
 - Heat density too high for direct air cooling



Using the 3rd Dimension

- Power delivery
 - Current flow distributed in 3rd dimension perpendicular to wafer
- Heat removal
 - Water carries heat from wafer through cold plate



Building a Wafer-Scale Deep Learning Chip: Ingredients of a Successful Recipe

- Many Cores: large number of *small* cores
 - Large cores are too slow
 - Bonus! Redundancy for in system hardware repairs
- Local Memory: model weights & activations are local
 - External memory is too slow
 - All on-chip memory, reduces need for external interconnect, requires fewer pins
- Fast On-Chip Fabric: high bandwidth and low latency
 - Off-chip communication is too slow
 - Sub-μm lines across scribe to achieve 100 Petabit/s on-die speeds at wafer scale

Building a Wafer-Scale Deep Learning Chip: Inventions Required

- Thermal Expansion
 - Traditional chip-on-substrate hierarchies do not scale
 - Used special connector that can absorb expansion
- Package Assembly
 - Traditional package assembly technologies do not work at wafer scale
 - Invented entirely new tools to assemble the pieces together
- Power Delivery
 - High density precludes traditional POL converter designs and power distribution
 - Novel power delivery scheme through the PCB using 3rd dimension
- Cooling
 - High density precludes traditional forced-air cooling solutions
 - Special cold plate with water channels using 3rd dimension

Legacy Technologies: Brute Force Parallelism

Fine-grained

- Dense vector processors (e.g. GPUs)
- Limited when compute not large uniform blocks

Coarse-grained

- Scale out clustering (e.g. PCIe, Ethernet, IB, NVLink)
- Run multiple instances of the same model (data parallel)
- Limited by inherent serial nature of problem

Result: scaling is limited and costly

Specialized Accelerators are the Answer

Signal processing: DSP

• Packet processing: Switches

• Graphics: GPU

Neural Network Processing:

Programming the Wafer Scale Engine

- Neural network models expressed in common ML frameworks
- Cerebras interface to framework extracts the neural network
- Performs placement and routing to map neural network layers to fabric
- The entire wafer operates on the single neural network

