# Building a Wafer-Scale Deep Learning Chip: Lessons Learned

Cerebras Systems

### Largest Chip Ever Built

- 46,225 mm<sup>2</sup> silicon
- 1.2 trillion transistors
- 400,000 AI optimized cores
- 18 Gigabytes of On-chip Memory
- 9 PByte/s memory bandwidth
- 100 Pbit/s fabric bandwidth
- TSMC 16nm process





## Cerebras Wafer Scale Engine



#### Cerebras WSE

1.2 Trillion Transistors 46,225 mm<sup>2</sup> Silicon



#### Largest GPU

21.1 Billion Transistors 815 mm<sup>2</sup> Silicon

# Deep Learning: The Most Important Computational Workload of Our Time

- Proliferating across industries and applications
- Large and growing portion of workload in datacenter
- Between 2012 and 2018 this workload grew 300,000x

This is a **hard problem!** 

Size: Peta-exa scale compute for each problem, and growing

Shape: A mixture of both heavy parallel and serial computation

Legacy architectures use brute force parallelism that limit scaling up and out

→ We need specialized accelerators



#### The Cerebras Architecture is Optimized for DL Compute

- Core optimized for neural network primitives
- Flexible, programmable core: NN architectures are evolving
- Designed for sparse compute: workloads contain fine-grained sparsity
- Local memory: weights & activations are local with low data reuse
- Fast interconnect: layer-to-layer with high bandwidth and low latency



## Flexible Cores Optimized for Tensor Operations

#### Key to supporting rapidly evolving NN architectures

- Fully programmable compute core
- Full array of general instructions with ML extensions
- Flexible general ops for control processing
  - e.g. arithmetic, logical, load/store, branch
- Optimized tensor ops for data processing
  - Tensors as first class operands
  - e.g. fmac [z] = [z], [w], a
    3D 3D 2D scalar





## Sparse Compute Engine for Neural Networks

## NN operations like nonlinearities naturally create fine-grained sparsity

- Dataflow scheduling in hardware
  - Triggered by data
  - Filters out sparse data
  - Skips unnecessary processing











**Dense Network** 

Sparse Network

## Traditional Memory Architectures <u>not</u> Optimized for DL

In neural networks, weights and activations are local, with low reuse

#### Traditional memory designs are punished

- Central shared memory is slow & far away
- Requires high data reuse (caching)
- Fundamental operation (matrix\*vector) has low data reuse





## A Memory Architecture that <u>is</u> Optimized for DL

In neural networks, weights and activations are local, with low data reuse

# The right answer is distributed, high performance, on-chip memory

- All memory is fully distributed along with compute datapaths
- Datapath has full performance from memory



Memory uniformly distributed across cores





### High-Bandwidth Low-Latency Interconnect

## Low latency intra/inter-layer local connectivity with high bandwidth

- Fast and fully configurable fabric
- Small single-word messages
- All HW-based communication avoids SW overhead
- 2D mesh topology effective for local communication
  - High bandwidth and low latency for local communication
  - · Higher utilization and efficiency than global topologies





#### Achieving Radical Performance Gains

Training neural networks requires more compute than can fit on a single die

- More Al optimized cores
- More high speed on chip memory
- More fabric bandwidth at low latency connecting cores together





## Build Big Chips

#### Big Chips Process Data More Quickly-> Producing Answers In Less Time

- Cluster scale performance on a single chip
- GB of fast memory 1 clock cycle from core
- On-chip interconnect orders of magnitude faster than off-chip.
- Model-parallel, linear performance scaling
- Training at scale, with any batch size, at full utilization
- Vastly lower power & less space

### The Challenges Of Wafer Scale

Building a 46,225 mm<sup>2</sup>, 1.2 Trillion Transistor Chip

#### Challenges include:

- Cross-die connectivity
- Yield
- Thermal expansion
- Package assembly
- Power and cooling



#### Challenge 1: Cross Die Connectivity

- Standard fabrication process requires die to be independent
- Scribe line separates each die
- Scribe line used as mechanical barrier for die cutting and for test structures





#### **Cross-Die Wires**

- Add wires across scribe line in partnership with TSMC
- Extend 2D mesh across die
- Same connectivity between cores and across scribe lines create a homogenous array
- Short wires enable ultra high bandwidth with low latency





### Challenge 2: Yield

#### Impossible to yield full wafer with zero defects

Silicon and process defects are inevitable even in mature process





#### Redundancy is Your Friend

- Uniform small core architecture enables redundancy to address yield at very low cost
- Design includes redundant cores and redundant fabric links
- Redundant cores replace defective cores
- Extra links reconnect fabric to restore logical 2D mesh





### Challenge 3: Thermal Expansion in the Package

 Silicon and PCB expand at different rates under temp

 Size of wafer would result in too much mechanical stress using traditional package technology





#### Connecting Wafer to PCB

 Developed custom connector to connect wafer to PCB

Connector absorbs the variation while maintaining connectivity





### Challenge 4: Package Assembly

- No traditional package exists
- Package includes:
  - PCB
  - Connector
  - Wafer
  - Cold plate
- All components require precise alignment





#### **Custom Packaging Tools**

- Developed custom machines and process
- Tools to ensure precision alignment
- Tools for special handling









### Challenge 5: Power and Cooling

## Concentrated high density exceeds traditional power & cooling capabilities

- Power delivery
  - Current density too high for power plane distribution in PCB
- Heat removal
  - Heat density too high for direct air cooling





## Using the 3<sup>rd</sup> Dimension

- Power delivery
  - Current flow distributed in 3rd dimension perpendicular to wafer
- Heat removal
  - Water carries heat from wafer through cold plate





# Building a Wafer-Scale Deep Learning Chip: Ingredients of a Successful Recipe

- Many Cores: large number of *small* cores
  - Large cores are too slow
  - Bonus! Redundancy for in system hardware repairs
- Local Memory: model weights & activations are local
  - External memory is too slow
  - All on-chip memory, reduces need for external interconnect, requires fewer pins
- Fast On-Chip Fabric: high bandwidth and low latency
  - Off-chip communication is too slow
  - Sub-μm lines across scribe to achieve 100 Petabit/s on-die speeds at wafer scale



# Building a Wafer-Scale Deep Learning Chip: Inventions Required

- Thermal Expansion
  - Traditional chip-on-substrate hierarchies do not scale
  - Used special connector that can absorb expansion
- Package Assembly
  - Traditional package assembly technologies do not work at wafer scale
  - Invented entirely new tools to assemble the pieces together
- Power Delivery
  - High density precludes traditional POL converter designs and power distribution
  - Novel power delivery scheme through the PCB using 3rd dimension
- Cooling
  - High density precludes traditional forced-air cooling solutions
  - Special cold plate with water channels using 3rd dimension









### Legacy Technologies: Brute Force Parallelism

#### Fine-grained

- Dense vector processors (e.g. GPUs)
- Limited when compute not large uniform blocks

#### Coarse-grained

- Scale out clustering (e.g. PCIe, Ethernet, IB, NVLink)
- Run multiple instances of the same model (data parallel)
- Limited by inherent serial nature of problem

Result: scaling is limited and costly



#### Specialized Accelerators are the Answer

Signal processing: DSP

• Packet processing: Switches

• Graphics: GPU

**Neural Network Processing:** 





#### Programming the Wafer Scale Engine

- Neural network models expressed in common ML frameworks
- Cerebras interface to framework extracts the neural network
- Performs placement and routing to map neural network layers to fabric
- The entire wafer operates on the single neural network

