
 

BOTTANGO ARDUINO DRIVER
DOCUMENTATION

Documentation rev 7

Table of Contents

End User License Agreement 3
ALL USE OF BOTTANGO IS AT YOUR SOLE RISK. 3

Set Up an Arduino for Bottango 4
A Little Background 4

What do you need 4

Uploading the Bottango Software on to your Arduino 4

You’re Good to Go! 6

Don't Forget To Update Your Microcontroller! 6

What Boards are Compatible with Bottango? 6

Controlling Lots of Motors 8
The Limits of a Single Arduino 8

Split Your Motors Across Multiple Arduinos 8

Don’t Mix Steppers and Servos on a Single Arduino 9

The Configuration File 10
How To Edit the Configuration 10

Enabling Saved Animations 10

Using Adafruit Libraries 11

Enabling Stepper Motors 11

Custom Motors, Events and Lifecycle Callbacks 13
What are Custom Motors and Events 13

Effector Identifier 13

Effector Lifecycle Events 14

Putting the Lifecycle Events Together for Custom Motors 15

Responding to Custom Events 16

Using the Bottango Networked Driver 19
What is the Bottango Networked Driver? 19

When is the Bottango Networked Driver the right choice for me? 20

Starting a Bottango Network Server 20

Running a Network Client 20

Modifying the example Python Code 20

2 © 2022 Bottango LLC

End User License Agreement

-1-
End User License Agreement

ALL USE OF BOTTANGO IS AT YOUR SOLE RISK.

BOTTANGO IS IN BETA TESTING AND MAY CONTAIN ERRORS,
DESIGN FLAWS, BUGS, OR DEFECTS. BOTTANGO SHOULD NOT BE
USED, ALONE OR IN PART, IN CONNECTION WITH ANY HAZARDOUS
ENVIRONMENTS, SYSTEMS, OR APPLICATIONS; ANY SAFETY
RESPONSE SYSTEMS; ANY SAFETY-CRITICAL HARDWARE OR
APPLICATIONS; OR ANY APPLICATIONS WHERE THE FAILURE OR
MALFUNCTION OF THE BETA SOFTWARE MAY REASONABLY AND
FORESEEABLY LEAD TO PERSONAL INJURY, PHYSICAL DAMAGE, OR
PROPERTY DAMAGE.

YOU MUST REVIEW AND AGREE TO THE BOTTANGO BETA
SOFTWARE END USER LICENSE AGREEMENT BEFORE USING
BOTTANGO: http://www.Bottango.com/EULA

3 © 2022 Bottango LLC

http://www.bottango.com/EULA

Set Up an Arduino for Bottango

-2-
Set Up an Arduino for Bottango

A Little Background

Bottango takes two parts to work: the included Bottango application, and at least one microcontroller for
the Bottango application to communicate with. The Bottango application sends commands to a
microcontroller over a serial connection, and the microcontroller then moves motors, etc. as required.

In order to provide what you need for both parts, we supply this Arduino-compatible code in addition to
the Bottango application. For all out-of-the-box functionality of Bottango, you shouldn't need to edit or
modify the included Arduino-compatible code.

That being said, the Arduino-compatible code is provided to you open source (see
BottangoArduinoLicence.txt). If your needs require you to edit the included code, you are able to do so.

What do you need

In order to set up your Arduino with Bottango, you will need the following:

- An Arduino compatible microcontroller, and a USB cable.
- The Arduino IDE installed on your computer (https://www.arduino.cc/en/software).
- The BottangoArduino.ino Arduino sketch and associated files, included in the same folder as this

documentation.

Uploading the Bottango Software on to your Arduino

 Open the BottangoArduino.ino file, which should open in the Arduino IDE if you
have it installed.

You will see the BottangoArduino.ino file opened:

This documentation covers some pretty advanced topics that are not needed to get started with
Bottango.

You only need to read and follow this first chapter to get started!

4 © 2022 Bottango LLC

Set Up an Arduino for Bottango

 Connect your Arduino compatible microcontroller to your computer via USB.

 Select the board type for your microcontroller in the “Select Board” dropdown.

If you’re not sure what board you have, you probably have an Arduino Uno. If your board looks larger than
an Arduino Uno, it’s probably an Arduino Mega, and if it looks smaller than an Arduino Uno, it’s probably

5 © 2022 Bottango LLC

Set Up an Arduino for Bottango

an Arduino Nano. If it’s not showing up in the list when you connect it to your computer via USB, you may
have an unusual or off brand board, and will need to troubleshoot detecting it by the Arduino IDE. Feel
free to join our Bottango Discord for advice from the community.

 Click the “upload” right pointing arrow icon in the Arduino IDE to upload the
Bottango Arduino code to your microcontroller.

You’re Good to Go!

If everything worked right, you should have the microcontroller set up to work with Bottango. Continue to
refer to the main documentation on how to use Bottango to control your robots, or read on to see
advanced usage of the Bottango Arduino code.

If you’re just getting started, don’t read the rest of the chapters in this documentation yet! It covers fairly
advanced topics you won’t need yet. Most all out of the box functionality is enabled just by uploading the
provided code.

If you’re having trouble, here's some helpful documentation from Arduino: https://www.arduino.cc/en/
Guide/Windows or https://www.arduino.cc/en/Guide/MacOSX. As well, you can join the Bottango
Discord group for support: https://discord.gg/6CVfGa6

Don't Forget To Update Your Microcontroller!

When you download an update to Bottango, you should always repeat the above steps to update the
code on your microcontroller as well! Bottango is in heavy development so when the application
changes, a lot of times the microcontroller code changes with

What Boards are Compatible with Bottango?

Bottango is optimized for and tested thoroughly on microcontrollers with ATMega328p and ATmega2560
chips. In practice, this means Arduino Uno, Mega and Nano boards. When in doubt, you’ll find the most
success with those three types of Arduinos.

However, Bottango can in theory work on any Arduino compatible microcontroller, with one caveat: The
Bottango Arduino stepper functionality makes heavy use of a kind of functionality called “interrupt

6 © 2022 Bottango LLC

Set Up an Arduino for Bottango

timers.” If you want to enable stepper motors on an microcontroller besides the above three, you’ll need
to be comfortable modifying the interrupt timer initialization code to work for your specific board.

7 © 2022 Bottango LLC

Controlling Lots of Motors

-3-
Controlling Lots of Motors

The Limits of a Single Arduino

Let’s compare an Arduino to a modern computer that has, for an example, 16 gigabytes of ram and an 8
core processor running at 2.5 GHz. An Arduino Uno has 2kb ram and a single core running at 16 MHz.

If it’s not immediately apparent the huge difference in power, the modern computer has 16 MILLION kb
ram compared to the Arduino’s two. And the modern computer’s processor is as much as 125,000% faster
than the Arduino’s.

All of this is to set your expectations of just how much a single Arduino can do. Bottango’s code is well
optimized, but it is fairly intensive in amount of processing for an average Arduino program. As such, in
this chapter we’ll go over the best practices of getting great performance, and how to get the results you
want.

Split Your Motors Across Multiple Arduinos

In order to get best results, there are optimizations you can take to get great performance for controlling
lots of motors. But the core idea is this:

Bottango has no problem communicating with multiple Arduinos at once, and in fact is optimized to do
just that!

This chart is the recommended number of motors to put on a single Arduino:

What happens if you get out of ideal and into the “Allowed” zone? You may see slightly more
sluggishness or choppiness, depending on the complexity of the animations being sent to the Arduino (in
terms of number of unique keyframes). Depending on your needs you might not see any difference, or it

Bottango can control an UNLIMITED number of Arduinos, but a single Arduino
can only control a fixed number of motors. Bottango is designed to allow you to

easily split your motors across multiple Arduinos.

Motor Type Ideal Allowed Requires Modifications

Servo 6 or Less 8 or Less 9 or More

Custom Motor / Event 6 or Less 8 or Less 9 or More

Stepper 3 or Less 8 or Less 9 or More

8 © 2022 Bottango LLC

Controlling Lots of Motors

might be small enough to not matter. Stepper motors especially will get more choppy the more you add
to the Arduino.

If you want to go past the maximum 8 motors per Arduino, see chapter 4 (Configuration File), but you
should only do that if you know you’re using a microcontroller able to keep up with the requirements of
that many motors.

Don’t Mix Steppers and Servos on a Single Arduino

The control algorithms for steppers and servos are very different in the Bottango code. If at all possible,
you shouldn’t use the same Arduino to control both a stepper and a servo, as the stepper code can cause
issues with the PWM signal generation required for precise servo control.

As stated in the previous section, Bottango is designed to allow you to easily split your motors across
multiple Arduinos.

9 © 2022 Bottango LLC

The Configuration File

-4-
The Configuration File

How To Edit the Configuration
Included in the Bottango Arduino code is a configuration file. This allows you to easily change some of
the ways the Bottango Arduino code works. You can access it in the Arduino IDE by opening the
BottangoArduino.ino file, and then clicking on the tab labeled “BottangoArduinoConfig.h”

The first section, from “#define MAX_REGISTERED_EFFECTORS 8” to “#define BAUD_RATE 115200” is
probably best left alone.

If you wanted to change the maximum number of motors on a board, you would change that first line
from 8 to some other number, but as stated in the previous chapter, this is best done only if you fully
understand what would be needed to support that change.

Enabling Saved Animations

When you save out animations, you need to let the Bottango Arduino code know to use saved animations
instead of listening for animations to come over USB.

In the line “// #define USE_COMMAND_STREAM “ remove the two slashes at the beginning of the line
(“//“) to enable that functionality. You’ll also need to include the “GeneratedCommandStream” files that
the Bottango application generates for you on exporting animations in the same folder as the
BottangoArduino.ino file.

Save the file, and re-upload the code to your microcontroller.

10 © 2022 Bottango LLC

The Configuration File

Using Adafruit Libraries

You can control servos in Bottango with the Adafruit 16 channel PWM shield, and steppers with the
Adafruit motor shield v2. In order to do so you must first install the corresponding Adafruit library on your
computer. You must install the libraries using the Arduino IDE library manager, so that the libraries will be
installed in the default location.

Select Tools > Manage Libraries... and then find the corresponding library and install it.

In the line “// #define USE_ADAFRUIT_PWM_LIBRARY “ remove the two slashes at the beginning of the
line (“//“) to enable support for the 16 channel PWM shield.

In the line “// #define USE_ADAFRUIT_MOTOR_SHIELD_V2_LIBRARY “ remove the two slashes at the
beginning of the line (“//“) to enable support for the motor shield v2.

Save the file, and re-upload the code to your microcontroller.

Enabling Stepper Motors

Stepper motors by default are not enabled in the Bottango Arduino code. This is because the control
protocol for stepper motors can interfere with the sensitive PWM timing needed to control servos.

In the line “// #define ENABLE_STEPPERS “ remove the two slashes at the beginning of the line (“//“) to
enable support for stepper motors.

NOTE: The Adafruit 16 channel PWM shield introduces a layer of communication from the Arduino to
the PWM Shield which takes additional time and processing.

For a small number of servos or simple animations this likely won’t matter, but you’ll see sluggishness
and slow-downs more often when using the 16 channel PWM shield vs using a direct pin connection.

11 © 2022 Bottango LLC

The Configuration File

NOTE: If at all possible do not control stepper motors and servos on the same Arduino. Split the
motor types between two Arduinos.

12 © 2022 Bottango LLC

Custom Motors, Events and Lifecycle Callbacks

-5-
Custom Motors, Events and Lifecycle

Callbacks

What are Custom Motors and Events

The Bottango applications allows you to define and control custom motors and events. These represent
hardware that don’t fit nicely into the out of the box supported effectors that you might want to control.

As well, Bottango provides callbacks, that allow you to input your own logic at various stages in the
lifecycle of an effector.

In order to add your own logic, you’ll modify the various methods in the
“BottangoArduinoCallbacks.cpp” file. This chapter assumes you’re comfortable writing C++ code,
however controlling custom motors and events is the only case in Bottango where writing your own code
is required.

Effector Identifier

Every motor registered with an Arduino has a unique eight character c-string identifier. In the bottango
application, click on a motor to see it’s identifier. For default motors, the identifier is generated from the
pins used to control it, in combination with an i2c address if it exists. For custom motors and events, you
define that identifier yourself.

Each method in the “BottangoArduinoCallbacks.cpp” file has a pointer to an AbstractEffector *effector
as one of the parameters in the method. In order to determine which motor is being acted on in a
particular call to a method, you can access and identifier of the effector, and compare it against a desired
identifier.

As an example, let’s say you wanted to know if the call to a method was happening on a motor with the
identifier “6”

13 © 2022 Bottango LLC

Custom Motors, Events and Lifecycle Callbacks

Effector Lifecycle Events

Motors registered with an Arduino have the following lifecycle callbacks that allow you to input your own
code

- void onEffectorRegistered(AbstractEffector *effector) - Called AFTER the motor is set live and
registered with Bottango.

- void onEffectorDeregistered(AbstractEffector *effector) - Called BEFORE the motor is set NOT live
and deregistered with Bottango.

char effectorIdentifier[9]; // initialize a c-string to hold the identifier
effector->getIdentifier(effectorIdentifier, 9); // fill the c-string with the identifier from the passed effector

if (strcmp(effectorIdentifier, "6") == 0) // strcmp(char* str1, char* str2) lets us know if the strings match
{
 // my logic here
}

In this example, we turn on a light when an effector with the identifier 1 is registered.

void onEffectorRegistered(AbstractEffector *effector)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "1") == 0)
 {
 pinMode(LED_BUILTIN, OUTPUT);
 digitalWrite(LED_BUILTIN, HIGH);
 }
}

In this example, we turn on a light when an effector with the identifier 1 is registered.

void onEffectorDeregistered(AbstractEffector *effector)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "1") == 0)
 {
 pinMode(LED_BUILTIN, OUTPUT);
 digitalWrite(LED_BUILTIN, LOW); }
 }
}

14 © 2022 Bottango LLC

Custom Motors, Events and Lifecycle Callbacks

- void effectorSignalOnLoop(AbstractEffector *effector, int signal) - Called every void loop() in the
main loop thread, along with the int signal that effector is targeting in any current animation.

Note that for stepper motors, the signalOnLoop function is called on each loop with the signal at the
time the method is called and NOT on each step. This is because the steps themselves happen on an
interrupt timer. It is essential that interrupt timer calls be as quick as possible, so it’s not realistic to add
additional callback logic to each stepper step, as even the pointer to the function takes precious cycles.

Putting the Lifecycle Events Together for Custom Motors

In order to control a custom motor, you should have everything you need to drive your own motor types.
You would use the register call back to initialize your motor, the deregister callback to shut down your
motor, and the signalOnLoop callback to set it’s position based on Bottango’s processing of animations.

In this example, we turn on a light whenever an effector with the identifier 1 is greater than 1500.

void effectorSignalOnLoop(AbstractEffector *effector, int signal)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "1") == 0)
 {
 pinMode(LED_BUILTIN, OUTPUT);
 if (signal > 1500)
 {
 digitalWrite(LED_BUILTIN, HIGH);
 }
 else
 {
 digitalWrite(LED_BUILTIN, LOW);
 }
 }
}

15 © 2022 Bottango LLC

Custom Motors, Events and Lifecycle Callbacks

Responding to Custom Events

In the Bottango Application, you can create custom events of the following types:

- Curved (events with a range from 0 to 1)
- On / Off (events that are either on or off)
- Trigger (events that fire at particular times)
- Color (events that change color on a Red, Green and Blue scale)

In this example, we initialize, shut down, and set the position of a custom motor with the identifier “myMotor”.

CustomMotor *myMotorInstance; // an instance of a class you have defined to control your motor type

void onEffectorRegistered(AbstractEffector *effector)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "myMotor") == 0)
 {
 myMotorInstance->setup(); // call your own logic to set up your motor
 }
}

void onEffectorDeregistered(AbstractEffector *effector)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "1") == 0)
 {
 myMotorInstance->shutDown(); // call your own logic to shut down your motor
 }
}

void effectorSignalOnLoop(AbstractEffector *effector, int signal)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "1") == 0)
 {
 myMotorInstance->setSignal(signal); // call your own logic to set your motor’s position
 }
}

16 © 2022 Bottango LLC

Custom Motors, Events and Lifecycle Callbacks

In order to respond to those events, you’ll need to input your own custom code. Note that unlike the
signalOnLoop callback which happens every loop, the custom event callbacks happen ONLY when the
signal changes.

In this example, we set the brightness of an LED with identifier “myLight” using a curved custom event.

Note: the float newMovement is a value from 0.0 to 1.0

void onCurvedCustomEventMovementChanged(AbstractEffector *effector, float newMovement)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "myLight") == 0)
 {
 pinMode(5, OUTPUT);
 int brightness = 255 * newMovement;
 analogWrite(5, brightness);
 }
}

In this example, we turn on and off an LED with identifier “myLight” using an on off custom event.

void onOnOffCustomEventOnOffChanged(AbstractEffector *effector, bool on)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "myLight") == 0)
 {
 pinMode(LED_BUILTIN, OUTPUT);
 digitalWrite(LED_BUILTIN, on ? HIGH : LOW); }
 }
}

17 © 2022 Bottango LLC

Custom Motors, Events and Lifecycle Callbacks

In this example, we set an LED’s brightness to a random value with identifier “myLight” using a trigger custom event.

void onTriggerCustomEventTriggered(AbstractEffector *effector)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "myLight") == 0)
 {
 pinMode(5, OUTPUT);
 int brightness = random(0, 256);
 analogWrite(5, brightness);
 }
}

In this example, we set an RGB LED’s color with identifier “myLight” using a color custom event.

void onColorCustomEventColorChanged(AbstractEffector *effector, byte newRed, byte newGreen, byte newBlue)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "myRGB") == 0)
 {
 pinMode(3, OUTPUT);
 pinMode(5, OUTPUT);
 pinMode(6, OUTPUT);

 analogWrite(3, newRed);
 analogWrite(5, newGreen);
 analogWrite(6, newBlue);
 }
}

NOTE: More robust support for addressable RGB LED’s like Neopixels is coming soon. In the
meanwhile, join the Bottango discord to talk about what can be done now, and the limitations to work

around to control Neopixels in Bottango currently.

18 © 2022 Bottango LLC

Networked Driver Alternative

-7-
Using the Bottango Networked Driver

What is the Bottango Networked Driver?

The Bottango Networked Driver is an advanced tool for users comfortable writing their own code, and
looking for flexibility beyond what is offered by USB serial connections or saving animations to baked
code. It is made of two parts:

First, in Bottango you can set a hardware driver to operate as a sockets based networked server, instead
of communicating via USB serial.

Second, there is example code, written in Python, of a socket based client that can connect to the server
and respond to commands from Bottango. You are not limited to using Python, that is just the fully
functional example code.

19 © 2022 Bottango LLC

Networked Driver Alternative

When is the Bottango Networked Driver the right choice for
me?

If your desired use case is more advanced than what can be done over USB serial or exported to code,
then the most flexible alternative is the Bottango Networked Driver. Some example use cases where the
Bottango Networked Driver makes sense:

- I want to communicate from the Bottango app to my own code running on a computer.
- I want to control a motor that requires a connection to a laptop/desktop computer instead of a

microcontroller.
- I want to control a robot with Bottango wirelessly, and I’m able to use a Python compatible

microcontroller, or can rewrite the C++ code to create and maintain a socket connection for streamed
data (providing a networked variant of the C++ code is on the Bottango roadmap, but not yet
delivered)

Starting a Bottango Network Server

In Bottango, as shown in the above image, you can set a hardware driver to operate as a sockets based
networked server, instead of communicating via USB serial.

When you do so, and set that driver live, you will be creating a sockets based server on your network, at
the port you indicated. That server will listen for incoming connections, and stream commands to the
connected clients for you.

That server is located at the ip address of the computer running the Bottango application. Connecting to
that server with a client on a local network should use the local network address of the computer, and the
port you entered into Bottango (the default port is 59225). In order to communicate over the public facing
internet, you would need to have the client connect to the public IP address of the computer, and you
would be responsible for opening/forwarding the port as needed by your local network configuration.

Running a Network Client

The client that connects to the created server can be anything that can open and communicate in
network connection via sockets. The API that communicates commands back and forth in the C++ USB
serial microcontroller code and over the network is identical, and fully documented in the next chapter.
You are welcome to build your own network client if needed, using the API documentation provided.

However, Bottango also provides a fully functional example implementation of a client that can connect
to the network server in Python 3. If you’re trying to just get up and going fast, the example Python code
is fully functional and will be supported for future features.

Modifying the example Python Code

20 © 2022 Bottango LLC

Networked Driver Alternative

The most important file, if you want to quickly modify the Python code to meet your needs is the
“CallbacksAndConfiguration.py” file, located in the following directory in the Bottango installation .zip
downloaded from the Bottango website: Bottango/NetworkedDriver/src/CallbacksAndConfiguration.py

In this file you can set the address and port that you want to connect to. As well, there are callbacks for
registering, deregistering, and setting signal on effectors, with documentation of what parameters are
passed to those callbacks.

Make sure to set these configuration fields to match your server’s setup:

address = '127.0.0.1' # The server's hostname or IP address
port = 59225 # The port used by the server

These other configuration fields are less likely to be needed:

log = True # enable logging
roundSignalToInt = True # treat signal as an int (true) or as a float (false)
apiVersion = "0.5.0b" # api version to send in handshake response

Add your custom code as needed to the following lifecycle callbacks:

This callback is called whenever an effector is registered
handleEffectorRegistered(effectorType, identifier, minSignal, maxSignal, startingSignal):

This callback is called whenever an effector is deregistered
handleEffectorDeregistered(identifier):

This callback is called whenever an effector is changes its target signal for any reason
handleEffectorSetSignal(effectorType, identifier, signal):

This callback is called whenever an on/off custom event changes its target on/off state for any reason
handleEffectorSetOnOff(effectorType, identifier, on):

This callback is called whenever an trigger custom event fires for any reason
handleEffectorSetTrigger(effectorType, identifier):

21 © 2022 Bottango LLC

	End User License Agreement
	ALL USE OF BOTTANGO IS AT YOUR SOLE RISK.

	Set Up an Arduino for Bottango
	A Little Background
	What do you need
	Uploading the Bottango Software on to your Arduino
	You’re Good to Go!
	Don't Forget To Update Your Microcontroller!
	What Boards are Compatible with Bottango?

	Controlling Lots of Motors
	The Limits of a Single Arduino
	Split Your Motors Across Multiple Arduinos
	Don’t Mix Steppers and Servos on a Single Arduino

	The Configuration File
	How To Edit the Configuration
	Enabling Saved Animations
	Using Adafruit Libraries
	Enabling Stepper Motors

	Custom Motors, Events and Lifecycle Callbacks
	What are Custom Motors and Events
	Effector Identifier
	Effector Lifecycle Events
	Putting the Lifecycle Events Together for Custom Motors
	Responding to Custom Events

	Using the Bottango Networked Driver
	What is the Bottango Networked Driver?
	When is the Bottango Networked Driver the right choice for me?
	Starting a Bottango Network Server
	Running a Network Client
	Modifying the example Python Code

