
 

BOTTANGO ARDUINO
DOCUMENTATION

Documentation rev 3

Table of Contents

End User License Agreement 3
ALL USE OF BOTTANGO IS AT YOUR SOLE RISK. 3

Set Up an Arduino for Bottango 4
A Little Background 4

What do you need 4

Uploading the Bottango Software on to your Arduino 4

You're Good to Go! 6

Don't Forget To Update Your Microcontroller! 7

What Boards are Compatible with Bottango? 7

Controlling Lots of Motors 8
The Limits of a Single Arduino 8

Split Your Motors Across Multiple Arduinos 8

Don’t Mix Steppers and Servos on a Single Arduino 9

The Configuration File 10
How To Edit the Configuration 10

Enabling Saved Animations 10

Using Adafruit Libraries 11

Enabling Stepper Motors 11

Custom Motors, Events and Lifecycle Callbacks 13
What are Custom Motors and Events 13

Effector Identifier 13

Effector Lifecycle Events 14

Putting the Lifecycle Events Together for Custom Motors 15

Responding to Custom Events 16

Bottango Serial API 19
Create Your Own Bottango Microcontroller Code 19

The Bottango Serial API 19

2 © 2020 Bottango LLC

End User License Agreement

-1-
End User License Agreement

ALL USE OF BOTTANGO IS AT YOUR SOLE RISK.

BOTTANGO IS IN BETA TESTING AND MAY CONTAIN ERRORS,
DESIGN FLAWS, BUGS, OR DEFECTS. BOTTANGO SHOULD NOT BE
USED, ALONE OR IN PART, IN CONNECTION WITH ANY HAZARDOUS
ENVIRONMENTS, SYSTEMS, OR APPLICATIONS; ANY SAFETY
RESPONSE SYSTEMS; ANY SAFETY-CRITICAL HARDWARE OR
APPLICATIONS; OR ANY APPLICATIONS WHERE THE FAILURE OR
MALFUNCTION OF THE BETA SOFTWARE MAY REASONABLY AND
FORESEEABLY LEAD TO PERSONAL INJURY, PHYSICAL DAMAGE, OR
PROPERTY DAMAGE.

YOU MUST REVIEW AND AGREE TO THE BOTTANGO BETA
SOFTWARE END USER LICENSE AGREEMENT BEFORE USING
BOTTANGO: http://www.Bottango.com/EULA

3 © 2020 Tonic North LLC

http://www.bottango.com/EULA

Set Up an Arduino for Bottango

2-
Set Up an Arduino for Bottango

A Little Background

Bottango takes two parts to work: the included Bottango application, and at least one microcontroller for
the Bottango application to communicate with. The Bottango application sends commands to a
microcontroller over a serial connection, and the microcontroller then moves motors, etc. as required.

In order to provide what you need for both parts, we supply this Arduino-compatible code in addition to
the Bottango application. For all out-of-the-box functionality of Bottango, you shouldn't need to edit or
modify the included Arduino-compatible code.

That being said, the Arduino-compatible code is provided to you open source (see
BottangoArduinoLicence.txt). If your needs require you to edit the included code, you are able to do so.

What do you need

In order to set up your Arduino with Bottango, you will need the following:

- An Arduino compatible microcontroller, and a USB cable.
- The Arduino IDE installed on your computer (https://www.arduino.cc/en/software).
- The BottangoArduino.ino Arduino sketch and associated files, included in the same folder as this

documentation.

Uploading the Bottango Software on to your Arduino

 Open the BottangoArduino.ino file, which should open in the Arduino IDE if you
have it installed.

You will see the BottangoArduino.ino file opened:

This documentation covers some pretty advanced topics that are not
needed to get started with Bottango.

You only need to read and follow this first chapter to get started!

4 © 2020 Tonic North LLC

https://www.arduino.cc/en/software

Set Up an Arduino for Bottango

 Connect your Arduino compatible microcontroller to your computer via USB.

 Select the board type for your microcontroller in the Arduino IDE in the Tools >
Board menu.

If you’re not sure, you probably have an Arduino Uno. If your board looks larger than an Arduino Uno, it’s
probably an Arduino Mega, and if it looks smaller than an Arduino Uno, it’s probably an Arduino Nano.

5 © 2020 Tonic North LLC

Set Up an Arduino for Bottango

 Select the port for your connected microcontroller in the Tools > Port menu.

If you’re using a Mac the port is probably something that has the word “usbmodem” in it.

If you’re using a Windows computer the port is probably a port that says COM4, COM5, COM6, etc. or a
higher number.

If you’re using a Linux computer the port is probably a port that has the word “ACM0” in it.

 Click the “upload” arrow icon in the Arduino IDE to upload the Bottango Arduino
code to your microcontroller.

You're Good to Go!

If everything worked right, you should have the microcontroller set up to work with Bottango. Continue to
refer to the main documentation on how to use Bottango to control your robots, or read on to see
advanced usage of the Bottango Arduino code.

If you’re just getting started, don’t read the rest of the chapters in this documentation yet! It covers fairly
advanced topics you won’t need yet. Most all out of the box functionality is enabled just by uploading the
provided code.

If you’re having trouble, here's some helpful documentation from Arduino: https://www.arduino.cc/en/
Guide/Windows or https://www.arduino.cc/en/Guide/MacOSX. As well, you can join the Bottango
Discord group for support: https://discord.gg/6CVfGa6

6 © 2020 Tonic North LLC

https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/MacOSX
https://discord.gg/6CVfGa6

Set Up an Arduino for Bottango

Don't Forget To Update Your Microcontroller!

When you download an update to Bottango, you should always repeat the above steps to update the
code on your microcontroller as well! Bottango is in heavy development so when the application
changes, a lot of times the microcontroller code changes with

What Boards are Compatible with Bottango?

Bottango is optimized for and tested thoroughly on microcontrollers with ATMega328p and ATmega2560
chips. In practice, this means Arduino Uno, Mega and Nano boards. When in doubt, you’ll find the most
success with those three types of Arduinos.

However, Bottango can in theory work on any Arduino compatible microcontroller, with one caveat: The
Bottango Arduino stepper functionality makes heavy use of a kind of functionality called “interrupt
timers.” If you want to enable stepper motors on an microcontroller besides the above three, you’ll need
to be comfortable modifying the interrupt timer initialization code to work for your specific board.

7 © 2020 Tonic North LLC

Custom Motors, Events and Lifecycle Callbacks

3-
Controlling Lots of Motors

The Limits of a Single Arduino

Let’s compare an Arduino to a modern computer that has, for an example, 16 gigabytes of ram and an 8
core processor running at 2.5 GHz. An Arduino Uno has 2kb ram and a single core running at 16 MHz.

If it’s not immediately apparent the huge difference in power, the modern computer has 16 MILLION kb
ram compared to the Arduino’s two. And the modern computer’s processor is as much as 125,000% faster
than the Arduino’s.

All of this is to set your expectations of just how much a single Arduino can do. Bottango’s code is well
optimized, but it is fairly intensive in amount of processing for an average Arduino program. As such, in
this chapter we’ll go over the best practices of getting great performance, and how to get the results you
want.

Split Your Motors Across Multiple Arduinos

In order to get best results, there are optimizations you can take to get great performance for controlling
lots of motors. But the core idea is this:

Bottango has no problem communicating with multiple Arduinos at once, and in fact is optimized to do
just that!

This chart is the recommended number of motors to put on a single Arduino:

Bottango can control an UNLIMITED number of Arduinos, but a single
Arduino can only control a fixed number of motors. Bottango is designed

to allow you to easily split your motors across multiple Arduinos.

Motor Type Ideal Allowed Requires
Modifications

Servo 6 or less 8 or less 9 or more

Custom Motor 6 or less 8 or less 9 or more

Stepper 3 or less 8 or less 9 or more

8 © 2020 Tonic North LLC

Custom Motors, Events and Lifecycle Callbacks

What happens if you get out of ideal and into the “Allowed” zone? You may see slightly more
sluggishness or choppiness, depending on the complexity of the animations being sent to the Arduino
(in terms of number of unique keyframes). Depending on your needs you might not see any difference, or
it might be small enough to not matter. Stepper motors especially will get more choppy the more you
add to the Arduino.

If you want to go past the maximum 8 motors per Arduino, see chapter 4 (Configuration File), but you
should only do that if you know you’re using a microcontroller able to keep up with the requirements of
that many motors.

Don’t Mix Steppers and Servos on a Single Arduino

The control algorithms for steppers and servos are very different in the Bottango code. If at all possible,
you shouldn’t use the same Arduino to control both a stepper and a servo, as the stepper code can cause
issues with the PWM signal generation required for precise servo control.

As stated in the previous section, Bottango is designed to allow you to easily split your motors across
multiple Arduinos.

9 © 2020 Tonic North LLC

Custom Motors, Events and Lifecycle Callbacks

4-
The Configuration File

How To Edit the Configuration

Included in the Bottango Arduino code is a configuration file. This allows you to easily change some of
the ways the Bottango Arduino code works. You can access it in the Arduino IDE by opening the
BottangoArduino.ino file, and then clicking on the tab labeled “BottangoArduinoConfig.h”

The first section, from “#define MAX_REGISTERED_EFFECTORS 8” to “#define BAUD_RATE 115200” is
probably best left alone.

If you wanted to change the maximum number of motors on a board, you would change that first line
from 8 to some other number, but as stated in the previous chapter, this is best done only if you fully
understand what would be needed to support that change.

Enabling Saved Animations

When you save out animations, you need to let the Bottango Arduino code know to use saved animations
instead of listening for animations to come over USB.

In the line “// #define USE_COMMAND_STREAM “ remove the two slashes at the beginning of the line
(“//“) to enable that functionality. You’ll also need to include the “GeneratedCommandStream” files that
the Bottango application generates for you on exporting animations in the same folder as the
BottangoArduino.ino file.

Save the file, and re-upload the code to your microcontroller.

10 © 2020 Tonic North LLC

Custom Motors, Events and Lifecycle Callbacks

Using Adafruit Libraries

You can control servos in Bottango with the Adafruit 16 channel PWM shield, and steppers with the
Adafruit motor shield v2. In order to do so you must first install the corresponding Adafruit library on your
computer. You must install the libraries using the Arduino IDE library manager, so that the libraries will be
installed in the default location.

Select Tools > Manage Libraries… and then find the corresponding library and install it.

In the line “// #define USE_ADAFRUIT_PWM_LIBRARY “ remove the two slashes at the beginning of the
line (“//“) to enable support for the 16 channel PWM shield.

In the line “// #define USE_ADAFRUIT_MOTOR_SHIELD_V2_LIBRARY “ remove the two slashes at the
beginning of the line (“//“) to enable support for the motor shield v2.

Save the file, and re-upload the code to your microcontroller.

Enabling Stepper Motors

Stepper motors by default are not enabled in the Bottango Arduino code. This is because the control
protocol for stepper motors can interfere with the sensitive PWM timing needed to control servos.

NOTE: The Adafruit 16 channel PWM shield introduces a layer of
communication from the Arduino to the PWM Shield which takes

additional time and processing.

For a small number of servos or simple animations this likely won’t matter,
but you’ll see sluggishness and slow-downs more often when using the 16

channel PWM shield vs using a direct pin connection.

11 © 2020 Tonic North LLC

Custom Motors, Events and Lifecycle Callbacks

In the line “// #define ENABLE_STEPPERS “ remove the two slashes at the beginning of the line (“//“) to
enable support for stepper motors.

NOTE: If at all possible do not control stepper motors and servos on the
same Arduino. Split the motor types between two Arduinos.

12 © 2020 Tonic North LLC

Custom Motors, Events and Lifecycle Callbacks

5-
Custom Motors, Events and Lifecycle

Callbacks

What are Custom Motors and Events

The Bottango applications allows you to define and control custom motors and events. These represent
hardware that don’t fit nicely into the out of the box supported effectors that you might want to control.

As well, Bottango provides callbacks, that allow you to input your own logic at various stages in the
lifecycle of an effector.

In order to add your own logic, you’ll modify the various methods in the
“BottangoArduinoCallbacks.cpp” file. This chapter assumes you’re comfortable writing C++ code,
however controlling custom motors and events is the only case in Bottango where writing your own code
is required.

Effector Identifier

Every motor registered with an Arduino has a unique eight character c-string identifier. In the bottango
application, click on a motor to see it’s identifier. For default motors, the identifier is generated from the
pins used to control it, in combination with an i2c address if it exists. For custom motors and events, you
define that identifier yourself.

Each method in the “BottangoArduinoCallbacks.cpp” file has a pointer to an AbstractEffector *effector
as one of the parameters in the method. In order to determine which motor is being acted on in a
particular call to a method, you can access and identifier of the effector, and compare it against a desired
identifier.

As an example, let’s say you wanted to know if the call to a method was happening on a motor with the
identifier “6”

13 © 2020 Tonic North LLC

Custom Motors, Events and Lifecycle Callbacks

Effector Lifecycle Events

Motors registered with an Arduino have the following lifecycle callbacks that allow you to input your own
code

- void onEffectorRegistered(AbstractEffector *effector) - Called AFTER the motor is set live and
registered with Bottango.

- void onEffectorDeregistered(AbstractEffector *effector) - Called BEFORE the motor is set NOT live
and deregistered with Bottango.

char effectorIdentifier[9]; // initialize a c-string to hold the identifier
effector->getIdentifier(effectorIdentifier, 9); // fill the c-string with the identifier from the passed effector

if (strcmp(effectorIdentifier, "6") == 0) // strcmp(char* str1, char* str2) lets us know if the strings match
{
 // my logic here
}

In this example, we turn on a light when an effector with the identifier 1 is registered.

void onEffectorRegistered(AbstractEffector *effector)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "1") == 0)
 {
 pinMode(LED_BUILTIN, OUTPUT);
 digitalWrite(LED_BUILTIN, HIGH);
 }
}

14 © 2020 Tonic North LLC

Custom Motors, Events and Lifecycle Callbacks

- void effectorSignalOnLoop(AbstractEffector *effector, int signal) - Called every void loop() in the
main loop thread, along with the int signal that effector is targeting in any current animation.

Note that for stepper motors, the signalOnLoop function is called on each loop with the signal at the
time the method is called and NOT on each step. This is because the steps themselves happen on an
interrupt timer. It is essential that interrupt timer calls be as quick as possible, so it’s not realistic to add
additional callback logic to each stepper step, as even the pointer to the function takes precious cycles.

Putting the Lifecycle Events Together for Custom Motors

In this example, we turn off a light when an effector with the identifier 1 is deregistered.

void onEffectorDeregistered(AbstractEffector *effector)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "1") == 0)
 {
 pinMode(LED_BUILTIN, OUTPUT);
 digitalWrite(LED_BUILTIN, LOW);
 }
}

In this example, we turn on a light whenever an effector with the identifier 1 is greater than 1500.

void effectorSignalOnLoop(AbstractEffector *effector, int signal)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "1") == 0)
 {
 pinMode(LED_BUILTIN, OUTPUT);
 if (signal > 1500)
 {
 digitalWrite(LED_BUILTIN, HIGH);
 }
 else
 {
 digitalWrite(LED_BUILTIN, LOW);
 }
 }
}

15 © 2020 Tonic North LLC

Custom Motors, Events and Lifecycle Callbacks

In order to control a custom motor, you should have everything you need to drive your own motor types.
You would use the register call back to initialize your motor, the deregister callback to shut down your
motor, and the signalOnLoop callback to set it’s position based on Bottango’s processing of animations.

Responding to Custom Events

In the Bottango Application, you can create custom events of the following types:

- Curved (events with a range from 0 to 1)
- On / Off (events that are either on or off)

In this example, we initialize, shut down, and set the position of a custom motor with the identifier
“myMotor”.

CustomMotor *myMotorInstance; // an instance of a class you have defined to control your motor type

void onEffectorRegistered(AbstractEffector *effector)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "myMotor") == 0)
 {
 myMotorInstance->setup(); // call your custom logic to set up your motor
 }
}

void onEffectorDeregistered(AbstractEffector *effector)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "1") == 0)
 {
 myMotorInstance->shutDown(); // call your custom logic to shut down your motor
 }
}

void effectorSignalOnLoop(AbstractEffector *effector, int signal)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "1") == 0)
 {
 myMotorInstance->setSignal(signal); // call your custom logic to set your motor’s position
 }
}

16 © 2020 Tonic North LLC

Custom Motors, Events and Lifecycle Callbacks

- Trigger (events that fire at particular times)

In order to respond to those events, you’ll need to input your own custom code. Note that unlike the
signalOnLoop callback which happens every loop, the custom event callbacks happen ONLY when the
signal changes.

In this example, we set the brightness of an LED with identifier “myLight” using a curved custom event.

Note: the float newMovement is a value from 0.0 to 1.0

void onCurvedCustomEventMovementChanged(AbstractEffector *effector, float newMovement)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "myLight") == 0)
 {
 pinMode(5, OUTPUT);
 int brightness = 255 * newMovement;
 analogWrite(5, brightness);
 }
}

17 © 2020 Tonic North LLC

Custom Motors, Events and Lifecycle Callbacks

In this example, we turn on and off an LED with identifier “myLight” using an on off custom event.

void onOnOffCustomEventOnOffChanged(AbstractEffector *effector, bool on)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "myLight") == 0)
 {
 pinMode(LED_BUILTIN, OUTPUT);
 digitalWrite(LED_BUILTIN, on ? HIGH : LOW);
 }
}

In this example, we set an LED’s brightness to a random value with identifier “myLight” using a trigger
custom event.

void onTriggerCustomEventTriggered(AbstractEffector *effector)
{
 char effectorIdentifier[9];
 effector->getIdentifier(effectorIdentifier, 9);

 if (strcmp(effectorIdentifier, "myLight") == 0)
 {
 pinMode(5, OUTPUT);
 int brightness = random(0, 256);
 analogWrite(5, brightness);
 }
}

18 © 2020 Tonic North LLC

Bottango Serial API

6-
Bottango Serial API

Create Your Own Bottango Microcontroller Code

Bottango provides the included open source Arduino compatible code so you can communicate with the
Bottango application using an Arduino compatible microcontroller. However, all communication happens
over serial, and if you were so inclined, you could implement your own microcontroller code to respond
to the Bottango serial API on any kind of microcontroller.

If you do so, please let us know! We’d love to see what you come up with!

You can monitor all incoming and outgoing serial commands in the Bottango application using the
logger. This can be a helpful tool to understand how Bottango works behind the scenes.

The Bottango Serial API

Serial commands are terminated with a ‘\n’ character. Parameters are separates with a ‘,’ character.

Every command contains a hash code as the final parameter. This allows you to sanity check that the
command string did not get errors introduced over the line. If you would like to use the hash code, see
the method bool checkHash(char *cmdString) in the file src/BottangoCore.cpp to see the hash check

19 © 2020 Tonic North LLC

Bottango Serial API

logic. Hash parameters start with an ‘h’ character. As an example, you might see the command
“xUC,4,h368”

— BASIC LIFECYCLE —

The lifecycle of communication begins with a handshake request from the Bottango application, which
should elicit a handshake response from the microcontroller.

• Outgoing Arduino startup, on serial opened
<- BOOT

• Incoming Handshake Request after BOOT is received:
Param 0: random code for verification
-> hRQ,144

• Outgoing Handshake Response:
Param 0: current driver version
Param 1: repeat back random code for verification
Param 2: bool (as int) true if accepting commands, false in saved animation playback mode
<- btngoHSK,0.3.5c,144,1

• Incoming Time Sync
(see src/time.cpp for how Bottango keeps time between the Application and the microcontroller in sync)
Param 0, time in MS since LAST time sync.
-> tSYN, 30000

— START AND STOP —
• Incoming Deregister All Effectors Currently registered
-> xE

• Incoming Deregister a specific effector
Param 0, identifier of effector
-> xUE,3

• Incoming clear all curves currently playing on all registered effectors
-> xC

• Incoming clear all curves currently playing on a specific effector
-> xUC,3

— REGISTER EFFECTOR —
Note: There is no update an effector. If a change occurs, the effector is deregistered, and then a new
replacement with updated data is registered.

• Incoming register a servo with pin control
Param 0, pin

20 © 2020 Tonic North LLC

Bottango Serial API

Param 1, minimum PWM signal
Param 2, maximum PWM signal
Param 3, maximum PWM signal change per second
Param 4, starting PWM signal
-> rSVPin,3,800,1900,600,1500

• Incoming register a servo with i2c control
Param 0, i2c address
Param 1, pin
Param 2, minimum PWM signal
Param 3, maximum PWM signal
Param 4, maximum PWM signal change per second
Param 5, starting PWM signal
-> rSVPin,64,3,800,1900,600,1500

• Incoming register a stepper with 4 pin control
Param 0, pin 0
Param 1, pin 1
Param 2, pin 2
Param 3, pin 3
Param 4, maximum counter clockwise steps from home (will always be negative)
Param 5, maximum clockwise steps from home (will always be positive)
Param 6, starting steps offsets from home (negative or positive)
-> rSTPin,3,4,5,6,-500,500,0

• Incoming register a stepper with step dir control
Param 0, step Pin
Param 1, dir Pin
Param 2, bool (as int), true if clockwise on low, false if counterclockwise on low
Param 3, maximum counter clockwise steps from home (will always be negative)
Param 4, maximum clockwise steps from home (will always be positive)
Param 5, starting steps offsets from home (negative or positive)
-> rSTDir,3,4,1,-500,500,0

• Incoming register a stepper with i2c control
Param 0, i2c address
Param 1, pin
Param 2, maximum counter clockwise steps from home (will always be negative)
Param 3, maximum clockwise steps from home (will always be positive)
Param 4, starting steps offsets from home (negative or positive)
-> rSTPin,64,0,-500,500,0

• Incoming register a curved custom event
Param 0, identifier
Param 1, max movement per second
Param 2, starting movement

21 © 2020 Tonic North LLC

Bottango Serial API

-> rECC,myEvent,0.25,0.5

• Incoming register an on/off custom event
Param 0, identifier
Param 1, bool as int, true if should start on.
-> rECOnOff,0

• Incoming register a trigger custom event
Param 0, identifier
Param 1, bool as int, true if should start on.
-> rECTrig,Off,0

• Incoming register a custom motor
Param 0, identifier
Param 1, minimum signal
Param 2, maximum signal
Param 3, maximum signal change per second
Param 4, starting signal
-> rMTR,myMotor,-1000,1000,300,0

• Incoming manually sync an effectors signal in order to home it
Param 0, identifier
Param 1, amount of signal to sync by (can be negative or positive)
-> sycM,myMotor,-100

— ANIMATION CURVES —

After sending an animation curve, Bottango will wait until it gets the “ready for next” signal before
sending the next one, in order to prevent serial buffer overrun

• Outgoing Ready For Next
<- \nOK\n

Bottango attempts to cache curves on the microcontroller, rather than send them just in time, whenever
possible. When a curve is 1 second or less away from being played, Bottango will send the curve to the
microcontroller, unless at least 3 curves are currently cached and waiting, in which case it will send the
most immediate three, and wait to send the next curve until Bottango predicts that a cached curve has
been played and can be removed.

Bottango sends to the microcontroller animation curves, rather than sampled data. This takes the form of
a starting and ending keyframe and duration.

Please see src/BezierCurve.cpp to see how the incoming curve is translated into animation and sampled
over time.

• Incoming Set Motor Curve

22 © 2020 Tonic North LLC

Bottango Serial API

Param 0, identifier
Param 1, time of start in MS relative to last sync time
Param 2, duration of curve in MS
Param 3, start movement (expressed as an int between 0 - 1000)
Param 4, start control point tangent Y (relative to start movement) (expressed as an int between 0 - 1000)
Param 5, start control point tangent X (relative to start time in MS)
Param 6, end movement (expressed as an int between 0 - 1000)
Param 7, end control point tangent Y (relative to start movement) (expressed as an int between 0 - 1000)
Param 8, end control point tangent X (relative to start time in MS)
-> sC,133,1500,333,250,12,1000,444,393

• Incoming Set On Off Curve
Param 0, identifier,
Param 1, time of start in MS relative to last sync time
Param 2, bool as int, true if on
-> sCO,322,myEvent,1

• Incoming Set Trigger Curve
Param 0, identifier,
Param 1, time of start in MS relative to last sync time
-> sCT,322,myEvent

23 © 2020 Tonic North LLC

	End User License Agreement
	ALL USE OF BOTTANGO IS AT YOUR SOLE RISK.

	Set Up an Arduino for Bottango
	A Little Background
	What do you need
	Uploading the Bottango Software on to your Arduino
	You're Good to Go!
	Don't Forget To Update Your Microcontroller!
	What Boards are Compatible with Bottango?

	Controlling Lots of Motors
	The Limits of a Single Arduino
	Split Your Motors Across Multiple Arduinos
	Don’t Mix Steppers and Servos on a Single Arduino

	The Configuration File
	How To Edit the Configuration
	Enabling Saved Animations
	Using Adafruit Libraries
	Enabling Stepper Motors

	Custom Motors, Events and Lifecycle Callbacks
	What are Custom Motors and Events
	Effector Identifier
	Effector Lifecycle Events
	Putting the Lifecycle Events Together for Custom Motors
	Responding to Custom Events

	Bottango Serial API
	Create Your Own Bottango Microcontroller Code
	The Bottango Serial API

